
Undecidability II

Lecture 26

1

C
S

37
4

Example of Undecidable Language

2

SELFREJECT = { <M> | M rejects <M> }

M =Turing Machine (piece of executable code)

<M> = encoding of M as a string (source code for M)

<M> is what you would feed to a universal TM, that would
allow it to simulate M.

(e.g. TM that rejects everything. TM that rejects every
description of a TM are in that language) 

C
S

37
4

3

SELFHALT = { <M> | M halts on <M> }

Claim: SELFHALT is undecidable  

To show L is undecidable, reduce some undecidable
language to L

More general looking problem:
HALT = { <M,w> | M halts on w }

Claim: HALT is acceptable

Claim: HALT is undecidable
The halting problem

Showing Undecidability

C
S

37
4

4

HALT = { <M,w> | M halts on w }

Claim: HALT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM H that

decides HALT. Reduce from SELFHALT

Showing Undecidability

C
S

37
4

5

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

(is a TM useless or not?)

Claim: NEVERACCEPT is undecidable

C
S

37
4

How many Turing Machines?

6

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

C
S

37
4

7

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

How many Turing Machines?

C
S

37
4

8

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

M’
x

w hardcoded and M hardcoded in M’

How many Turing Machines?

C
S

37
4

• Build M’?

Write a program

Output <M’>: M’ - Turing Machine,

 s.t. for any string x, M’ accepts x iff M accepts w.

Input <M,w>: M - Turing Machine,

 w - string

• could produce M’ ourselves (write pseudocode).
• So far, when we talk about reduction, WE are doing the

reduction
• Now, we need to describe how to do this transformation by

writing code that performs the transformation

C
S

37
4

10

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

We will assume we know the following:

ACCEPT = { <M,w> | M accepts w } is undecidable

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

(M accepts nothing)

Claim: NEVERACCEPT is undecidable

C
S

37
4

11

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: NEVERACCEPT is undecidable

NA

A

<M>

w

<M’>

acc

rej

C
S

37
4

12

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: NEVERACCEPT is undecidable

NA

A

<M>

w

<M’>M’ accepts x iff M
accepts w

acc

rej

acc

rej

how many TMs?

C
S

37
4

13

NA

A

<M>

w

<M’>M’ accepts x iff M
accepts w

acc

rej

acc

rej

when I design a compiler for a piece of code, I can’t worry
about the input that this code will be fed many many years

from now.
x and w not related!

C
S

37
4

14

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 1: M accepts w.

Implies M’ accepts everything (by def. of M’).

Implies M’ not in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA rejects <M’> (by def of NA)

Implies A accepts <M,w> (by def of A)

C
S

37
4

15

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 2: M doesn’t accept w.

Implies M’ doesn't accept anything (by def. of M’).

Implies M’ in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA accepts <M’> (by def of NA)

Implies A rejects <M,w> (by def of A)

These two cases are exhaustive and imply A decides
 ACCEPT, contradiction

C
S

37
4

16

• We want to answer questions of the form “does the language this
machine accepts have some interesting property?”

• L={set of acceptable languages that is not empty and is not the set
of all languages}

• e.g. L = set of all languages containing the word “surfing”

• Define ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

• L =ø : ACCEPTIN(ø) is decidable (always say no, no language is
element of ø)

• L= everything: ACCEPTIN(all) is decidable (always say yes: does
this TM accept a language?)

• For every other L ACCEPTIN(L) is undecidable

Rice’s Theorem

C
S

37
4

Rice’s Theorem

To Show ACCEPTIN(L) is undecidable

Reduce from HALT = { <M,w> | M halts on w }

C
S

37
4

Rice’s Theorem

AIL

HALT

<M>

w

acc

rej

�18

HALT = { <M,w> | M halts on w }

M halts on W iff ACCEPT(WTF) is in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

<WTF>

C
S

37
4

19

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>

acc

rej

�19

HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

C
S

37
4

20

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

Assume ø not in L. Let Y be a TM so that ACCEPT(Y) in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

C
S

37
4

21

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

if M halts on w then WTF(x) is Y(x) and

ACCEPT(WTF)=ACCEPT(Y) in L, AIL accepts
if M doesn't halt on w then WTF(x) never halts

so ACCEPT(WTF)=ø, not in L, AIL rejects

C
S

37
4

22

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

H accepts <M,w> iff H halts on w!

contradiction

C
S

37
4

23

Rice’s Theorem

• example: {<M>| M accepts the empty string}

• M1 accepts nothing : empty string is not in ø

• M2 accepts everything: empty string is in S*

• example: {<M>| M accepts regular language}

• M1 accepts O*

• M2 accepts {0n1n:n≥0}

