NP hardness reductions

Lecture 22
Recap

- **P** = YES/NO questions that can be answered in polynomial time in input size (algorithm)

- **NP** = YES/No problems where YES instance can be verified in polynomial time

- X is **NP-hard**: X in P implies P=NP

- Cook-Levin: CircuitSAT NP hard
How to prove NP hardness

To prove X is NP-hard:

- **Step 1**: Pick a known NP-hard problem Y

- **Step 2**: Assume for the sake of argument, a polynomial time algorithm for X.

- **Step 3**: Derive a polynomial time algorithm for Y, using algorithm for X as subroutine.

- **Step 4**: Contradiction

Reduce FROM the problem I know about TO the problem I am curious about
NP hardness

- Library of NP-hard problems

Let’s assume the problem is easy and see what ridiculous consequences follow
3SAT

- Look at boolean formulas in CNF

\[
\text{clause} \\
(a \lor b \lor c \lor d) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b})
\]
3SAT

- Look at boolean formulas in CNF

\[
\text{clause} \\
(a \lor b \lor c \lor d) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b})
\]

3SAT: exactly three literals per clause!
every literal is a variable or the negation of a variable
3SAT

- Look at boolean formulas in CNF

\[
\begin{align*}
\text{clause} & \\
& (a \lor b \lor c \lor d) \land (b \lor \lnot c \lor \lnot d) \land (\lnot a \lor c \lor d) \land (a \lor \lnot b)
\end{align*}
\]

Parse tree:

3SAT: exactly three literals per clause!
- every literal is a variable or the negation of a variable

Not all boolean functions can be in the form \(a \lor b \lor c \lor d \)
3SAT

- Look at boolean formulas in CNF

\[(a \lor b \lor c \lor d) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b})\]

Parse tree:

3SAT special case of SAT. Unlike when we are thinking about special cases in algorithms

2SAT there is algorithm!
NP hardness

- Poly time reduction from CircuitSAT.
- If there is a poly time algorithm to solve 3SAT, then there is poly time algorithm to solve CircuitSAT.
Reduction CircuitSAT to 3SAT

• **Step 1**: Make gates binary (blows up size by at most 2x wires, if there were x wires). Poly time.

• **Step 2**: Transcribe

\[c = x \land y \]
\[\land \]
\[f = x \lor y \]
\[\land \]
\[g = \neg x \]
Reduction CircuitSAT to 3SAT

- **Step 3:** Make clauses in 3CNF

\[a = b \land c \quad \iff \quad (a \lor \bar{b} \lor \bar{c}) \land (\bar{a} \lor b) \land (\bar{a} \lor c) \]

\[a = b \lor c \quad \iff \quad (\bar{a} \lor b \lor c) \land (a \lor \bar{b}) \land (a \lor \bar{c}) \]

\[a = \bar{b} \quad \iff \quad (a \lor b) \land (\bar{a} \lor \bar{b}) \]

\[a \lor b \quad \iff \quad (a \lor b \lor x) \land (a \lor b \lor \bar{x}) \]

\[a \quad \iff \quad (a \lor x \lor y) \land (a \lor \bar{x} \lor y) \land (a \lor x \lor \bar{y}) \land (a \lor \bar{x} \lor \bar{y}) \]
(y_1 \lor x_1 \lor x_4) \land (\overline{y_1} \lor x_1 \lor \overline{z_1}) \land (y_1 \lor x_1 \lor \overline{z_1}) \land (y_1 \lor x_4 \lor z_2) \land (y_1 \lor x_4 \lor \overline{z_2})
\land (y_2 \lor x_4 \lor z_3) \land (y_2 \lor x_4 \lor \overline{z_3}) \land (y_2 \lor x_4 \lor z_4) \land (y_2 \lor x_4 \lor \overline{z_4})
\land (y_3 \lor x_3 \lor \overline{y_2}) \land (y_3 \lor x_3 \lor z_5) \land (y_3 \lor x_3 \lor \overline{z_5}) \land (y_3 \lor y_2 \lor z_6) \land (y_3 \lor y_2 \lor \overline{z_6})
\land (y_4 \lor y_1 \lor x_2) \land (y_4 \lor x_2 \lor z_7) \land (y_4 \lor x_2 \lor \overline{z_7}) \land (y_4 \lor \overline{y_1} \lor z_8) \land (y_4 \lor \overline{y_1} \lor \overline{z_8})
\land (y_5 \lor x_2 \lor \overline{z_9}) \land (y_5 \lor x_2 \lor z_9) \land (y_5 \lor x_2 \lor z_{10}) \land (y_5 \lor \overline{x_2} \lor \overline{z_{10}})
\land (y_6 \lor x_5 \lor z_{11}) \land (y_6 \lor x_5 \lor \overline{z_{11}}) \land (y_6 \lor \overline{x_5} \lor z_{12}) \land (y_6 \lor \overline{x_5} \lor \overline{z_{12}})
\land (y_7 \lor \overline{y_3} \lor y_5) \land (y_7 \lor \overline{y_3} \lor z_{13}) \land (y_7 \lor \overline{y_3} \lor \overline{z_{13}}) \land (y_7 \lor \overline{y_5} \lor z_{14}) \land (y_7 \lor \overline{y_5} \lor \overline{z_{14}})
\land (y_8 \lor \overline{y_4} \lor \overline{y_7}) \land (y_8 \lor y_4 \lor z_{15}) \land (y_8 \lor y_4 \lor \overline{z_{15}}) \land (y_8 \lor y_7 \lor z_{16}) \land (y_8 \lor y_7 \lor \overline{z_{16}})
\land (y_9 \lor y_8 \lor \overline{y_6}) \land (y_9 \lor y_8 \lor z_{17}) \land (y_9 \lor y_8 \lor \overline{z_{17}}) \land (y_9 \lor y_6 \lor z_{18}) \land (y_9 \lor y_6 \lor \overline{z_{18}})
\land (y_9 \lor \overline{y_9} \lor \overline{z_{20}}) \land (y_9 \lor \overline{z_{19}} \lor \overline{z_{20}}) \land (y_9 \lor \overline{z_{19}} \lor \overline{z_{20}}) \land (y_9 \lor \overline{z_{19}} \lor \overline{z_{20}})

Although this formula may look a lot more ugly and complicated than the original circuit at first glance, it’s actually only a constant factor larger—every binary gate in the original
Algo runs in poly time
Proof:
• Circuit satisfiable implies formula satisfiable
• formula satisfiable implies circuit satisfiable

even though the reduction goes one direction, the proof needs to go both directions
MAX Independent Set

- **Input:** a graph $G(V,E)$
- **Output:** Largest subset of vertices with no edges between them. (enough to find size)
How to prove NP hardness

To prove X is NP-hard:

- **Step 1**: Pick a known NP-hard problem Y

- **Step 2**: Assume for the sake of argument, a polynomial time algorithm for X.

- **Step 3**: Derive a polynomial time algorithm for Y, using algorithm for X as subroutine.

- **Step 4**: Contradiction
 Reduce FROM the problem I know about
 TO the problem I am curious about
NP hardness

- Library of NP-hard problems

CircuitSAT

SAT

3SAT

Let’s assume the problem is easy and see what ridiculous consequences follow
MAX Independent Set

- Input: a graph $G(V,E)$
- Output: Largest subset of vertices with no edges between them. (enough to find size)

Prove this is NP hard by reduction from 3SAT
MAX Independent Set

• Given an arbitrary 3CNF formula

• Build a graph G as follows

 1) For every clause 3 vertices connected in a triangle

 \[x \lor y \lor \neg z \]

 2) add edges between a literal and its negation
MAX Independent Set

• Input: a graph $G(V,E)$

• Output: Largest subset of vertices with no edges between them. (enough to find size)

k clauses $\rightarrow 3k$ vertices

graph has IS of size k if and only if the formula is satisfiable
Claim:
Graph has IS of size k if and only if the formula is satisfiable

2 steps to proof:

Step 1) Assume formula satisfiable
- Choose satisfying assignment ($a=1$, $b=1$, $c=1$, $d=0$)

$$(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor d)$$

No long edges because every selected literal is true and no edges between each triangle

G Has IS of size k!
MAX Independent Set

- Input: a graph $G(V,E)$
- Output: Largest subset of vertices with no edges between them. (enough to find size)

$$k \text{ clauses } \rightarrow 3k \text{ vertices}$$

Graph has IS of size k if and only if the formula is satisfiable.
Claim:
Graph has IS of size k if and only if the formula is satisfiable

2 steps to proof:
Step 2) Suppose G has IS of size k. Then this IS contains at most one node per triangle so it has exactly one node per triangle. These nodes provide a satisfying assignment to the formula
When you write reductions

• **Step 1**: Describe the algorithm (and it runs in poly time)

• **Step 2**: Prove one way

• **Step 3**: Prove the other way
NP hardness

• Library of NP-hard problems

 CircuitSAT

 SAT

 3SAT

 MAX IS

Let’s assume the problem is easy and see what ridiculous consequences follow
MAX Clique

• Input: a graph $G(V,E)$

• Output: Largest subset of vertices that are all pairwise connected

• Reduction from MAX-IS

• Assume poly time algorithm for MAX Clique

• Derive poly time algorithm for MAX IS
what is G'? Not the same graph as G
NP hardness

- Library of NP-hard problems

 CircuitSAT
 SAT
 3SAT
 MAX IS
 MAX Clique

Let’s assume the problem is easy and see what ridiculous consequences follow
MIN Vertex Cover

- Input: a graph G(V,E)
- Output: Smallest set of vertices that touch every edge

- Reduction from MAX-IS
- Assume poly time algorithm for MIN Vertex Cover
what is G'? same graph as G
Output is different