More Recursion
Sorting

Quicksort:

\[
\text{QUICKSORT}(A[1..n]):
\]
\[
\text{if } (n > 1)
\]
\[
\text{Choose a pivot element } A[p]
\]
\[
r \leftarrow \text{PARTITION}(A, p)
\]
\[
\text{QUICKSORT}(A[1..r-1])
\]
\[
\text{QUICKSORT}(A[r+1..n])
\]
Running time

- How to choose pivot?
- first/last/middle/median of 3?
- In all cases $T(n) \leq T(n-2) + T(1) + O(n)$
Median of 3

take median of first, last middle
Running time of Quicksort

• O\((n^2) \) time!

 • \(T(n) = T(n-2) + T(1) + O(n) \)

 \[= O(n^2) \]

• I want

 • Pick an element “near” the middle in \(O(n) \) time
Running time of Quicksort

• Then the array partitions in smaller pieces.
• $T(n) = T(n/4) + T(3n/4) + O(n)$
• Solve with recursion trees
Running time of Quicksort

- Leaves on the left are shorter than leaves on the right!
- How do I get a reasonable bound?
Running time of Quicksort

- \(T(n) = T(n/4) + T(3n/4) + O(n) \)
- Solve the recurrence by summing up work at each level

\[\frac{n}{4} + \frac{3n}{4} = n \]

\[\frac{n}{16} + 3\frac{n}{16} + 3\frac{n}{16} + 9\frac{n}{16} = n \]
Running time of Quicksort

- \(T(n) = T(n/4) + T(3n/4) + O(n) \)

- What is the depth of shallow and deepest side of tree?

\[\frac{n}{4} + \frac{3n}{4} = n \]

\[\frac{n}{16} + \frac{3n}{16} + \frac{3n}{16} + \frac{9n}{16} = n \]
Running time of Quicksort
Running time of Quicksort

\[T(n) \leq n \log_4 4n \leq T(n) \leq n \log_{4/3} n \]

\[\log_b n = \frac{\log_c n}{\log_c b} \]
Running time of Quicksort

- I want
 - Pick an element “near” the middle in $O(n)$ time
 - Median Selection: given $A[1...n]$ find $\lfloor n/2 \rfloor$ smallest element
 - Doesn't matter exactly which median, if n is even or odd etc
Running time of Quicksort

- I want

 - Pick an element at the middle in O(n) time

 - Median Selection: given A[1…n] find \(|n/2|\) smallest element

 - Base case: if n<10 brute force

 - Or n<100000000000

 - Inputs less than a googlebyte either constant time or undecidable.
Median Selection

• Median Selection or “One Arm Quicksort”

• Pick a pivot and partition

\[
\text{A}[1,\ldots,n]
\]

A

p

• If pivot index = n/2, done

• If pivot index < n/2 (left side of the array), then “recurse” on A[p+1,\ldots,n]

• If pivot index > n/2 (right side of the array), then “recurse” on A[1,\ldots,p-1]
Median Selection

• Median Selection or “One Arm Quicksort”

• Pick a pivot and partition

\[A[1,\ldots,n] \]

\[p \]

• If pivot index = n/2, done

• If pivot index < n/2 (left side of the array), then “recurse” on \(A[p+1,\ldots,n] \)

• If pivot index > n/2 (right side of the array), then “recurse” on \(A[1,\ldots,p-1] \)
Median Selection

• Recursion would be wrong if I look for median!

A[1,...,n]

• If pivot index = n/2, done

• If pivot index < n/2 (left side of the array), then "recurse" on A[p+1,...,n]

• If pivot index > n/2 (right side of the array), then "recurse" on A[1,...,p-1]
QuickSelect

- More General Problem:

```
QuickSelect(A[1,...n], k)
```

input = unsorted array A[1,...n], k

output = k-th smallest element in A

- If pivot index = n/2, done

- If pivot index < n/2 (left side of the array), then recurse on (A[p+1,...,n], k-p)

- If pivot index > n/2 (right side of the array), then recurse on (A[1,...,p-1], k)
QuickSelect

How to choose pivot?
also recursive?

Same result as
Sort A
return A(k)

```
QUICKSELECT(A[1..n], k):
   if n = 1
      return A[1]
   else
      choose a pivot element A[p]
      r ← PARTITION(A[1..n], p)
      if k < r
         return QUICKSELECT(A[1..r-1], k)
      else if k > r
         return QUICKSELECT(A[r+1..n], k-r)
      else
         return A[r]
```
How to choose pivot?

• If I could choose something near the middle then:

• $T(n) \leq T(3n/4) + O(n)$

• Solve with recursion trees
Recursion Tree

- Sum of all nodes: descending geometric series

\[n \sum \left(\frac{3}{4}\right)^i = n \frac{1}{1 - \frac{3}{4}} = \frac{4}{3}n = O(n) \]
How to choose pivot?

- If I could choose something near the middle then:
 - $T(n) \leq T(3n/4) + O(n)$
 - We don’t have the magic to choose this pivot yet!
How to choose pivot?

• Imagine I have a two dimensional array:

\[
A[1\ldots n]
\]

\[
\begin{array}{cccccc}
\end{array}
\]

n/5 columns

5 rows

• Find median of each column (time?) \(O(n) \times \text{constant}\)

• Find median of each of those medians (MOM) \(T(n/5)\)
How to choose pivot?

<table>
<thead>
<tr>
<th>< MOM</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>> MOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3n/10</td>
<td>n/5 columns</td>
<td>A[1…n]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Find median of each column (time?)
- Find median of each of those medians (MOM) $T(n/5)$ time, recursion ferry!
- Use MOM as pivot, then one arm quicksort: $T(n) \leq T(7n/10) + O(n)$
MOMSelect

MOM5SELECT(A[1..n], k):
 if n ≤ 25
 use brute force
 else
 m ← ⌈n/5⌉
 for i ← 1 to m
 M[i] ← MEDIANOFFIVE(A[5i − 4..5i]) (Brute force!)
 mom ← MOMSELECT(M[1..m], [m/2]) (Recursion!)
 r ← PARTITION(A[1..n], mom)
 if k < r
 return MOMSELECT(A[1..r − 1], k) (Recursion!)
 else if k > r
 return MOMSELECT(A[r + 1..n], k − r) (Recursion!)
 else
 return mom
How to choose pivot?

- Subproblem I recurse on has at most 70 per cent of original array.
- Why the number 5?
- \(T(n) = T(n/5) + T(7n/10) + O(n) \)
Running time of MOM

\[T(n) = T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10}\right) + O(n) \]
Running time of MOM

\[T(n) = T(n/5) + T(7n/10) + O(n) \]

Sum is geometric series, adds up to \(O(n) \) but large constant!
Why 5?

$T(n) = T(n/3) + T(2n/3) + O(n)$

What is the solution?
Why 5?

T(n) = T(n/3) + T(2n/3) + O(n)

n log n, like sorting already!
Multiplication

• How to multiply two n digit numbers?

\[
\begin{array}{c}
31415962 \\
\times 27182818 \\
251327696 \\
31415962 \\
251327696 \\
62831924 \\
251327696 \\
31415962 \\
219911734 \\
62831924 \\
853974377340916
\end{array}
\]

• two nested for loops
• runs in $O(n^2)$ time
• Is this the best you can do?
Multiplication

• How to multiply two n digit numbers?

\[
\begin{array}{|c|c|}
\hline
\text{n/2} & \text{n/2} \\
\hline
\text{n/2} & \text{n/2} \\
\hline
\end{array}
\]

\[
(10^m a + b)(10^m c + d) = 10^{2m} ac + 10^m (bc + ad) + bd
\]

reduce to multiply 4 $n/2$ digit numbers!
Multiplication

\[10^m a + b \quad \begin{array}{|c|c|} \hline \text{n/2} & \text{n/2} \\ \hline \end{array} \]

\[10^m c + d \quad \begin{array}{|c|c|} \hline \text{n/2} & \text{n/2} \\ \hline \end{array} \]

\[T(n) = 3T(n/2) + O(n) = O(n^2) \]

Didn’t help much :(
Multiplication

\[(10^ma + b)(10^mc + d) = 10^{2m}ac + 10^m(bc + ad) + bd\]

\[ac + bd - (a - b)(c - d) = bc + ad\]
Multiplication

\[10^m a + b \quad \text{n/2} \quad \text{n/2} \]
\[10^m c + d \quad \text{n/2} \quad \text{n/2} \]

FastMultiply\((x, y, n)\):

- if \(n = 1 \)
 - return \(x \cdot y \)
- else
 - \(m \leftarrow \lfloor n/2 \rfloor \)
 - \(a \leftarrow \lfloor x/10^m \rfloor \); \(b \leftarrow x \mod 10^m \)
 - \(d \leftarrow \lfloor y/10^m \rfloor \); \(c \leftarrow y \mod 10^m \)
 - \(e \leftarrow \text{FastMultiply}(a, c, m) \)
 - \(f \leftarrow \text{FastMultiply}(b, d, m) \)
 - \(g \leftarrow \text{FastMultiply}(a - b, c - d, m) \)
 - return \(10^{2m} e + 10^m (e + f - g) + f \)
Multiplication Running time

\[T(n) = 3T(n/2) + O(n) \]

Ascending geometric series, every level has 50% more work than the previous one, the only work that matters is at the last level (leaves).
Multiplication Running time

\[T(n) = 3T(n/2) + O(n) \]

• At the leaves, we have constant size, assume it’s 1.
• total work \(\approx \) # leaves \(\times 1 \).
• how many leaves?
Multiplication Running time

\[T(n) = 3T(n/2) + O(n) \]

- \(\# \text{leaves} = 3^{\text{depth}} = 3^{\log_2 n} = n^{\log_2 3} = n^{1.6} \)