Recursion

Lecture10
Algorithms

- We will see two types of algorithms next
 1. Recursion (e.g. how to build an NFA from RegExp)
 2. Graph Algorithms (later)
What is Recursion?

Tower of Hanoi: Move the tower from one peg to another without ever putting a larger block on top of a smaller one.
Tower of Hanoi
Base Case?

Need to be careful about when we cannot invoke the induction ferry: Base Cases
Hanoi Algorithm

HANOI(n, src, dst, tmp):
 if n > 0
 HANOI(n − 1, src, tmp, dst)
 move disk n from src to dst
 HANOI(n − 1, tmp, dst, src)
Reduction = Delegation

Sometimes hard to delegate.
Reduction = Delegation

Say we want to build a minimal DFA from a regular expression

• Reg Exp \rightarrow NFA (thompson)

• NFA \rightarrow DFA (subset)

• DFA \rightarrow min DFA (Moore)

3 Steps. Not important how any of those work, as long as we are guaranteed they work.
Reduction = Delegation

How do you hunt a blue elephant?
- With the blue elephant gun

How do you hunt a red elephant?
- Hold its trunk until it turns blue, then hunt it with the blue elephant gun

How do you hunt a white elephant?
- Embarrass it till it becomes red. Use algorithm for hunting red elephants.
Reduction = Delegation

Sometimes hard to delegate.

Recursion even harder to delegate, you have to trust yourself.
Recursion = Delegation to yourself

Recursion is reduction to smaller instances of the SAME problem, which are solved by magic (or fairies, or inductive hypothesis...)
Sorting

Quicksort:

- choose a pivot element from the array
- partition the array into three subarrays: one with elements smaller than pivot, one the pivot itself, one with elements larger than pivot.
- Recursively quick sort the first and last subarray
- How to choose pivot?
Sorting

Quicksort:

ALGORITHMMS

M

ALGISH

RTSOS
Sorting

Quicksort:

ALGORITHM

M

AGHIL

ORSST
Sorting

Quicksort:

ALGORITHM

AGHILMORSST
Sorting

Quicksort:

```
QUICKSORT(A[1..n]):
    if (n > 1)
        Choose a pivot element A[p]
        r ← PARTITION(A, p)
        QUICKSORT(A[1..r - 1])
        QUICKSORT(A[r + 1..n])
```
Sorting

Partition (linear time):

```plaintext
PARTITION(A[1..n], p):
    i ← 0
    j ← n
    while (i < j)
        repeat i ← i + 1 until (i ≥ j or A[i] ≥ A[n])
        repeat j ← j − 1 until (i ≥ j or A[j] ≤ A[n])
        if (i < j)
    return i
```
Sorting

Mergesort:

• Divide the input array into two subarrays of roughly equal size

• Recursively merge sort each of the subarrays

• Merge the two newly sorted subarrays into a single sorted array
Sorting

Mergesort:

\[\text{ALGORITHM} \]

\[\begin{array}{c}
\text{AL} \\
\text{G} \\
\text{O} \\
\text{R} \\
\text{I} \\
\text{T} \\
\text{H} \\
\text{M} \\
\text{S}
\end{array} \]

\[\begin{array}{c}
\text{AL} \\
\text{G} \\
\text{O} \\
\text{R} \\
\text{I} \\
\text{T} \\
\text{H} \\
\text{M} \\
\text{S}
\end{array} \]
Sorting

Mergesort:

Algorithm

A G L O R

H I M S T
Sorting

Mergesort:

Need to merge the two subarrays.
Sorting

• Compare the first elements of the subarrays
• Write the smallest one in the output array.
• Recursion, now the problem is smaller
Sorting

Merge:

One comparison, one recursive call
Sorting

Merge:

A L G O R I T H M S

G L O R
H I M S T

One comparison, one recursive call
Sorting

Merge:

Where can this recursion break?
Sorting

Merge:

ALGORITHM

HMST

HMST
Sorting

Merge:

ALGORITHM

IMS

H
Sorting

Merge:

Where can this recursion break?
Sorting

Merge:

```
MERGE(A[1..n], m):
    i ← 1; j ← m + 1
    for k ← 1 to n
        if j > n
            B[k] ← A[i]; i ← i + 1
        else if i > m
            B[k] ← A[j]; j ← j + 1
        else if A[i] < A[j]
            B[k] ← A[i]; i ← i + 1
        else
            B[k] ← A[j]; j ← j + 1
    for k ← 1 to n
        A[k] ← B[k]
```

Loop = recursion

- When writing actual code easier to unfold the recursion
- When proving correctness easier to use induction (=recursion)
Sorting

Mergesort:

\[
\text{MERGESORT}(A[1..n]):
\]
\[
\begin{align*}
\text{if } n &> 1 \\
 m &\leftarrow \lceil n/2 \rceil \\
 \text{MERGESORT}(A[1..m]) \\
 \text{MERGESORT}(A[m+1..n]) \\
 \text{MERGE}(A[1..n], m)
\end{align*}
\]

Base cases:
- When size of arrays to merge is 1
- When size of arrays is less than 10 and then brute force
- It doesn’t matter, no need to optimize
Proof of Correctness

- We prove \textsc{merge} is correct by induction on \(n - k + 1\), which is the total size of the two sorted subarrays \(A[i..m]\) and \(A[j..n]\) that remain to be merged into \(B[k..n]\) when the \(k\)th iteration of the main loop begins. There are five cases to consider. Yes, five.

 - If \(k > n\), the algorithm correctly merges the two empty subarrays by doing absolutely nothing. (This is the base case of the inductive proof.)
 - If \(i \leq m\) and \(j > n\), the subarray \(A[j..n]\) is empty. Because both subarrays are sorted, the smallest element in the union of the two subarrays is \(A[i]\). So the assignment \(B[k] \leftarrow A[i]\) is correct. The inductive hypothesis implies that the remaining subarrays \(A[i+1..m]\) and \(A[j..n]\) are correctly merged into \(B[k+1..n]\).
 - Similarly, if \(i > m\) and \(j \leq n\), the assignment \(B[k] \leftarrow A[j]\) is correct, and The Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies that the \textsc{merge} algorithm correctly merges—the remaining subarrays \(A[i..m]\) and \(A[j+1..n]\) into \(B[k+1..n]\).
 - If \(i \leq m\) and \(j \leq n\) and \(A[i] < A[j]\), then the smallest remaining element is \(A[i]\). So \(B[k]\) is assigned correctly, and the Recursion Fairy correctly merges the rest of the subarrays.
 - Finally, if \(i \leq m\) and \(j \leq n\) and \(A[i] \geq A[j]\), then the smallest remaining element is \(A[j]\). So \(B[k]\) is assigned correctly, and the Recursion Fairy correctly does the rest.

Always make sanity check when you design algorithm!
Running time

• Number of fundamental operations as a function of input size n

• If array is sorted, then $O(n)$, but we don’t care about best case!

• Worst case running time for this class.

• Maybe different in practice, assumptions
Running time of Quicksort

• What is the running time $T(n)$ of quicksort?
• $O(n^2)$ time! (If I choose the smallest pivot)
 • $T(n)=O(n)+T(n-1)$

 = $O(n^2)$
Running time of Mergesort

• What is the running time $T(n)$ of mergesort?

• $O(n \log n)$ time!

• $T(n) = 2T(n/2) + O(n)$

• proof by induction if I know answer

• recursion tree!
Running time of Mergesort

Complete binary tree
every leaf is an array of size 1
Running time of Mergesort

\[T(n) = \frac{n}{2} + \frac{n}{4} + \frac{n}{4} \]

- Leave all the \(O() \) till the very end.
- Goal is to sum up all the quantities in all the nodes.
Running time of Mergesort

\[T(n) = 2T(n/2) + O(n) \]

• Solve the recurrence by summing up work at each level
Running time of Mergesort

- $T(n) = 2T(n/2) + O(n)$
- Total amount of work at level $k = \text{total amount of work at level } k-1\text{ (induction).}$
Running time of Mergesort

- \(T(n) = 2T(n/2) + O(n) \)

- Total amount of work = \(n \times (\text{height of the tree}) = n \log n \)
Running time of Quicksort, revisited

- Quicksort runs in time $O(n \log n)$ in practice.
- Quicksort runs in time $O(n \log n)$ on average if the data is randomly permuted.
- Quicksort runs in expected time $O(n \log n)$ if we randomly permute the data first.