Deterministic Finite Automata

Lecture 4
Input Accepted by a DFA

We say that M accepts $w \in \Sigma^*$ if M, on input w, starting from the start state s, reaches a final state

$$i.e., \delta^*(s,w) \in F$$

$L(M)$ is the set of all strings accepted by M

$$i.e., \ L(M) = \{ w \mid \delta^*(s,w) \in F \}$$

Called the language accepted by M
Input Accepted by a DFA

What kind of language is accepted by FSM?

- Automatic (it is an automaton after all)!

- We will use: REGULAR (not a coincidence)

Language is regular iff

- it is accepted by a finite state automaton

- it is described by a regular expression
Warning

“M accepts language L” does not mean simply that M accepts each string in L.

“M accepts language L” means M accepts each string in L and no others!

$L(M) = L$
Examples: What is $L(M)$?

Odd #0 and odd #1

Reject state

Abbreviation

0^*11^*

$(A+B)^*ABBA$
Building DFAs
State = Memory

First, decide on Q

The state of a DFA is its entire memory of what has come before

The state must capture enough information to complete the computation on the suffix to come

When designing a DFA, think “what do I need to know at this moment?” That is your state.
DFA Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

Is it regular?? $(0+1)^*00(0+1)^*$

What should be in the memory?

![Diagram](image)
DFA Construction Exercise

$L(M) = \{ w \mid w \text{ contains 00 } \}$

Is it regular?? $(0+1)^*00(0+1)^*$

What should be in the memory?

1

s

a
DFA Construction Exercise

\[L(M) = \{ w \mid w \text{ contains } 00 \} \]

Is it regular?? \((0+1)^*00(0+1)^*\)

What should be in the memory?

![DFA Diagram]

- States: \(s\) and \(a\)
- Transitions:
 - \(1 \rightarrow s\)
 - \(0 \rightarrow a\)
 - \(1 \rightarrow a\)
 - \(s \rightarrow s\)
 - \(a \rightarrow s\)

This DFA accepts strings containing the substring \(00\).
DFA Construction Exercise

$L(M) = \{ w \mid w \text{ contains 00} \}$

Is it regular?? $(0+1)^*00(0+1)^*$

What should be in the memory?
DFA Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

Is it regular?? $(0+1)^*00(0+1)^*$

What should be in the memory?

Diagram:

- States: s, a, b
- Transitions:
 - s to s on 1
 - s to a on 0
 - a to s on 1
 - a to b on 0
 - b to b on 0,1
DFA Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

- **s**: I haven’t seen a 00, previous symbol was 1 or undefined.
- **a**: I haven’t seen a 00, previous symbol was a 0
- **b**: I have seen a 00

• We have exhausted of all strings. Either accepted (with 00) or not.
DFA construction

- Make sure you interpret all the cases!

• How about design a DFA for \(L(M) = \{ w \mid w \text{ contains } 001100110011111001101101 \} \)?

• There is algorithm to minimize the DFA, but when you are asked to do it, try to be clear versus succinct.

• Try to be “stupid”, do brute force!!

• When you are just trying to prove that a language is regular —> DFA for the language exists. Write an algorithm like we did for multiple of 5!
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 00 and then 11} \} \]
A More Complicated example

$L(M) = \{w \mid w \text{ contains } 00\}$
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 11} \} \]
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 00 and then 11} \} \]
A More Complicated example

$L(M) = \{w \mid w \text{ contains } 00 \text{ and then } 11\}$
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 00 and then 11} \} \]
A More Complicated example

$L(M) = \{w \mid w \text{ contains 00 and then 11}\}$
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 00 and then 11} \} \]
A More Complicated example

$L(M) = \{w \mid w \text{ contains 00 and then 11}\}$
A More Complicated example

\[L(M) = \{w \mid w \text{ contains 00 and then 11}\} \]
A More Complicated example

$L(M) = \{ w \mid w \text{ contains 00 and then 11} \}$

• If A and B are regular, then AB is regular. Does the same hold for DFA?
A More Complicated example

\[L(M) = \{ w \mid w \text{ contains 00 and then 11} \} \]

- If A and B are regular, then AB is regular. Does the same hold for DFA?
 - NO! you cannot glue two DFAs together in general like that. This was a special case
What about the complement?

$L(M) = \{w \mid w \text{ contains no 11 after 00}\}$
What about the complement?

$L(M) = \{ w \mid w \text{ contains no } 11 \text{ after } 00 \}$
What about the complement?

$L(M) = \{ w \mid w \text{ contains no 11 after 00} \}$

- If L is regular, then $\Sigma^* \setminus L$ is regular
- Make the accepting states into non-accepting and the non-accepting states into accepting
$L = \{w: w \text{ contains } 00 \text{ and } 01\}?$

- I want to build a machine that decides if a string contains two zeroes in a row AND two ones in a row.
- I want to run both machines at the same time.
- At the end of the string, if I am on the accept state for machine 1 AND on the accept state for machine 2, then I accept.
- How many states total?
L = \{w: w contains 00 and 0, 11}\?

$L(M_1)$ contains 00

$L(M_2)$: contains 11
$L = \{w: w \text{ contains 00 and 0,11}\}?$

$L(M_1)$ contains 00

$L(M_2)$: contains 11
Let $L = \{w: w \text{ contains } 00 \text{ and } 11\}$?

$L(M_1)$ contains 00

$L(M_2)$ contains 11
L = \{w: w contains 00 and _0, 11\}?

$L(M_1)$ contains 00

$L(M_2)$ contains 11
L = \{w: w contains 00 and 0, 11\}?

L(M_1) contains 00

L(M_2) contains 11
L = \{w: w contains 00 and 0, 11\}?

L(M_1) contains 00

L(M_2) : contains 11
L = \{w: w contains 00 and 0,11\}?

$L(M_1)$ contains 00

$L(M_2)$ contains 11
L = \{w: w contains 00 and 0,11\}?

L(M_1) contains 00

L(M_2) : contains 11
L = \{w: w contains 00 and 0, 11\}?
L = \{w: w contains 00 and 11\}?

$L(M_1)$ contains 00

$L(M_2)$ contains 11
L = \{w: w contains 00 and 0,11\}?

\[L(M_1) \text{ contains 00} \]

\[L(M_2) : \text{contains 11} \]
The Product Construction

Formally, given two DFAs

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \text{ and } M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1\) accepts \(L_1\)

\(M_2\) accepts \(L_2\)

\[M = (\Sigma, Q, s, A, \delta) \text{ accepts } L_1 \cap L_2 \]

\[Q = Q_1 \times Q_2, \ s = (s_1, s_2) \]

\[A = \{(q_1, q_2): q_1 \in A_1 \text{ and } q_2 \in A_2\} \]

\[\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]

\[\delta((q_1, q_2), a) = (\quad , \quad) \]
The Product Construction

Formally, given two DFAs

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \] and \[M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1 \) accepts \(L_1 \)

\(M_2 \) accepts \(L_2 \)

\[M = (\Sigma, Q, s, A, \delta) \] accepts \(L_1 \cap L_2 \)

\[Q = Q_1 \times Q_2, \ s = (s_1, s_2) \]

\[A = \{(q_1,q_2): q_1 \in A_1 \text{ and } q_2 \in A_2\} \]

\[\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]

\[\delta((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
L = \{w: w contains 00 and 0,11\}?
L = \{w: w contains 00 and 0,11}\?
L = \{w: w contains 00 and 0, 11\}?
The Product Construction

Formally, given two DFAs

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \] and \[M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1 \) accepts \(L_1 \)

\(M_2 \) accepts \(L_2 \)

\[L_1 \cup L_2 \]

\[L_1 \cap L_2 \]

\[M = (\Sigma, Q, s, A, \delta) \] accepts

\[Q = Q_1 \times Q_2, \ s = (s_1, s_2) \]

\[A = \{(q_1,q_2): q_1 \in A_1 \text{ and } q_2 \in A_2\} \]

\[\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]

\[\delta((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
The Product Construction

Formally, given two DFAs

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \] and \[M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1 \) accepts \(L_1 \)
\(M_2 \) accepts \(L_2 \)

\[L_1 \cup L_2 \]

\[\delta : (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]
\[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
The Product Construction: Question

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \text{ and } M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1 \) accepts \(L_1 \)

\(M_2 \) accepts \(L_2 \)

\[M = (\Sigma, Q, s, A, \delta) \text{ accepts } L_1 \setminus L_2 \]

\[Q = Q_1 \times Q_2, \quad s = (s_1, s_2) \]

\[A = \{\} \]

\[\delta: (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]

\[\delta((q_1, q_2), a) = (\quad , \quad) \]
The Product Construction: Question

\[M_1 = (\Sigma, Q_1, s_1, A_1, \delta_1) \text{ and } M_2 = (\Sigma, Q_2, s_2, A_2, \delta_2) \]

Where \(M_1 \) accepts \(L_1 \)

\(M_2 \) accepts \(L_2 \)

\[M = (\Sigma, Q, s, A, \delta) \text{ accepts } L_1 \setminus L_2 \]

\[Q = Q_1 \times Q_2, \ s = (s_1, s_2) \]

\[A = \{ (q_1, q_2) : q_1 \in A_1 \text{ but not } q_2 \in A_2 \} \]

\[\delta : (Q_1 \times Q_2) \times \Sigma \rightarrow Q_1 \times Q_2 \]

\[\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)) \]
Closure Properties of Regular Languages

- **Union**: trivial for regular expressions, easy for DFAs via product
- **Complement**: easy for DFAs, hard for regular expressions
- **Intersection**: easy for DFAs via product, hard for regular expressions
- **Difference**: easy for DFAs via product, hard for regular expressions
- **Concatenation**: easy for regular expressions, hard for DFA’s