Finite State Machines

Lecture 3
Recall a Language is Regular if

- L is empty
- L contains a single string (could be the empty string)
- If L_1, L_2 are regular, then $L = L_1 \cup L_2$ is regular
- If L_1, L_2 are regular, then $L = L_1 L_2$ is regular
- If L is regular, then L^* is regular
Unbounded vs. Infinite

Why do we need bullet 5?

Why can’t we say that \(L^* \) is the infinite union of \(\{\varepsilon\} \cup L \cup LL \cup LLL \cup \ldots \)?

Recursive definitions: at every branch of recursion we need to reach a base case in \textbf{finite number} of steps.

We can invoke the union rule for any integer \(n \) number of steps.

\textbf{infinity is not a number!} I can only produce infinite sets by an operation like the \(* \).
Complexity of Languages

Central Question: How complex an algorithm is needed to compute (aka decide) a language? How much memory do I need?

Today: a simple class of algorithms, that are fast and can be implemented using minimal hardware

Finite State Machines -Deterministic Finite Automata (FSM-DFA)

DFAs around us: Vending machines, Elevators, Digital watch logic, Calculators, Lexical analyzers (part of program compilation), …
Multiple of 5

\[
\text{MULTIPLEOF5}(w[1..n]):
\]

\[
\begin{align*}
\text{rem} & \leftarrow 0 \\
\text{for } i & \leftarrow 1 \text{ to } n \\
\text{rem} & \leftarrow (2 \cdot \text{rem} + w[i]) \mod 5 \\
\text{if } \text{rem} & = 0 \\
\text{return } \text{TRUE} \\
\text{else} \\
\text{return } \text{FALSE}
\end{align*}
\]

- Could do long division, keep the intermediate results in an array but I don’t want to spend that much memory!
- Only one variable, rem, which represents the remainder of the part of the string I read so far when I divided by 5.
Multiple of 5

MULTIPLEOF5(w[1..n]):

rem ← 0
for i ← 1 to n
 rem ← (2 · rem + w[i]) mod 5
if rem = 0
 return TRUE
else
 return FALSE

- If I know the remainder for m mod 5, and I read one more bit then line 3 tells me what the new remainder is (either m0 or m1)

m0 = 2m if I see “0” next
m1 = 2m + 1 if I see “1” next
Multiple of 5

- Important feature of algorithm: Aside from variable \(i \) which counts the input bits and is necessary to read input, I only have one variable \(\text{rem} \), which takes only a small (5) number of values.

- Streaming algorithm: Data flies by! Once \(w[i] \) is gone, it is gone forever.

- Variable has a very small number of states, which I am able to specify at compile time. Very small amount of memory!
DFA (a.k.a. FSM)

check if binary input is a multiple of 5

store $x \mod 5$ here (initial value "null").
output bit indicates if it is 0.

next-state look-up table

next input symbol fed here

calculate $x' \mod 5$ from $x \mod 5$ and input bit b, where $x' = 2x + b$

output bit for the input so far
“Lookup” table

\[
\text{DoSOMETHINGCOOL}(w[1..n]):
\]
\[
q \leftarrow 0
\]
\[
\text{for } i \leftarrow 1 \text{ to } n
\]
\[
q \leftarrow \delta[q, w[i]]
\]
\[
\text{return } A[q]
\]

• q encapsulates the state of the algorithm

• Takes a small amount of values, which I know up front (e.g. q is a number between 1 and 4). Unbounded, not infinite!

• Depending on the character I read at position i, I change my state with function called delta (\(\delta\)).

• I have a hardcoded array A and based on what the state is when I finish reading the string, I output the value of the array.
“Lookup” table

If we want to use our new `DoSOMETHINGCOOL` algorithm to implement `MULTIPLEOf5`, we simply give the arrays δ and A the following hard-coded values:

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta[q, 0]$</th>
<th>$\delta[q, 1]$</th>
<th>$A[q]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>FALSE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>FALSE</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Instead of doing arithmetic at all, I could just **hard code** this lookup table into the code and simply do a lookup!
Algorithm or Machine? Algorithm is a Machine!!

Once you program the machine, you don’t have to monitor it. It runs AUTOMATICALLY (Automaton….)
DFA (a.k.a. FSM)

• Equivalent view as a graph!
DFA (a.k.a. FSM)

Example: check if input 01010101 is a multiple of 5

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
DFA (a.k.a. FSM)

check if input (MSB first) is a multiple of 5

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

How to fully specify a DFA (syntax):

FINITE Alphabet: Σ

FINITE Set of States: Q

Start state: $s \in Q$

Set of Accepting states: $A \subseteq Q$

Transition Function: $\delta : Q \times \Sigma \rightarrow Q$

$$\delta(q, a) = (2q + a) \text{ mod } 5$$
DFA (a.k.a. FSM)

3 equivalent ways to specify a FSM:

1) Table:

<table>
<thead>
<tr>
<th>q</th>
<th>δ[q, 0]</th>
<th>δ[q, 1]</th>
<th>A[q]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>FALSE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>FALSE</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

2) Transition diagram:

3) \[\delta(q, a) = (2q + a) \mod 5 \]

Together with a description of what are the states and what are the accepting states.
How to interpret these functions?

\[M = (\Sigma, Q, \delta, s, F) \]

- \(\delta^*(q, w) \) be the state \(M \) reaches starting from a state \(q \in Q \), on input \(w \in \Sigma^* \)

- Recursive definition?

- What are the cases going to be?
Behavior of a DFA on an input

\[M = (\Sigma, Q, \delta, s, F) \]

- \(\delta^*(q, w) \) be the state \(M \) reaches starting from a state \(q \in Q \), on input \(w \in \Sigma^* \)

- Formally,
 - \(\delta^*(q, w) = q \) if \(w = \varepsilon \)
 - \(\delta^*(q, w) = \delta^*(\delta(q, a), x) \) if \(w = ax \)

recursion!
Behavior of a DFA on an input

\[\delta^*(0,01001) = 4 \]

\[\delta^*(0,\varepsilon) = 0 \]

\[\delta^*(0,010) = 2 \]

\[\delta^*(2,01) = 4 \]
Behavior of a DFA on an input

\[\delta^*(0,01001) = 4 \]

- Specify a walk in the graph
- Best represented as
Example: What strings does this machine accept?

Alphabet: $\Sigma = \{0,1\}$
Set of States: $Q = \{s,t\}$
Start state: $s \in Q$
Accepting state: $t \in Q$
Transition Function: $\delta : Q \times \Sigma \rightarrow Q$

$\delta(s,0) = s, \delta(s,1) = t, \delta(t,0) = t, \delta(t,1) = s$

Question: what is $L(M)$?
Answer: strings with odd number of ones!
Input Accepted by a DFA

We say that M accepts $w \in \Sigma^*$ if M, on input w, starting from the start state s, reaches a final state

\[i.e., \delta^*(s,w) \in F \]

$L(M)$ is the set of all strings accepted by M

\[i.e., L(M) = \{w | \delta^*(s,w) \in F \} \]

Called the language accepted by M
Input Accepted by a DFA

What kind of language is accepted by FSM?

- Automatic (it is an automaton after all)!
- We will use: REGULAR (not a coincidence)

Language is regular iff

- it is accepted by a finite state automaton
- it is described by a regular expression
Warning

“M accepts language L” does not mean simply that M accepts each string in L.

“M accepts language L” means M accepts each string in L and no others!

$L(M) = L$
Examples: What is $L(M)$?

- Odd #0 and odd #1

- Abbreviation

- Reject state

- 0^*11^*

- $(A+B)^*ABBA$
Building DFAs
State = Memory

First, decide on Q

The state of a DFA is its entire memory of what has come before

The state must capture enough information to complete the computation on the suffix to come

When designing a DFA, think “what do I need to know at this moment?” That is your state.
Construction Exercise

\[L(M) = \{ w \mid w \text{ contains 00} \} \]

Is it regular?? \((0+1)^*00(0+1)^*\)

What should be in the memory?

\[s \rightarrow a \]
Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

Is it regular??

$(0+1)^*00(0+1)^*$

What should be in the memory?
Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

Is it regular?? \((0+1)^*00(0+1)^*\)

What should be in the memory?

\[
\begin{array}{c}
\text{s} \\
\text{1} \\
\text{0} \\
\text{s} \\
\text{a} \\
\text{1} \\
\end{array}
\]
Construction Exercise

$L(M) = \{ w \mid \text{w contains 00} \}$

Is it regular?\(\textbf{\textcolor{blue}{(0+1)^*00(0+1)^*}}\)

What should be in the memory?

Here is a diagram of a finite automaton that recognizes the language $L(M)$. The states are s, a, and b. The transitions are labeled with input symbols: 0 and 1. The initial state is s, and the accepting state is b.
Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

Is it regular??

$(0+1)^*00(0+1)^*$

What should be in the memory?

![Diagram](image-url)
Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 00 \}$

- s: I haven’t seen a 00, previous symbol was not 0
- a: I haven’t seen a 00, previous symbol was a 0
- b: I have seen a 00

- We have exhausted of all strings. Either accepted (with 00) or not.