Languages and Regular expressions

Lecture 2
Strings, Sets of Strings, Sets of Sets of Strings…

• We defined strings in the last lecture, and showed some properties.

• What about sets of strings?
Σ^n, Σ^*, and Σ^+

- Σ^n is the set of all strings over Σ of length exactly n. Defined inductively as:
 - $\Sigma^0 = \{\varepsilon\}$
 - $\Sigma^n = \Sigma\Sigma^{n-1}$ if $n > 0$

- Σ^* is the set of all finite length strings:
 $$\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$$

- Σ^+ is the set of all nonempty finite length strings:
 $$\Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$$
Σ^n, Σ^*, and Σ^+

- $|\Sigma^n| = |\Sigma|^n$
- $|\emptyset^n| = ?$

 $\quad - \emptyset^0 = \{\varepsilon\}$

 $\quad - \emptyset^n = \emptyset \emptyset \emptyset^{n-1} = \emptyset$ if $n > 0$

- $|\emptyset^n| = 1$ if $n = 0$
- $|\emptyset^n| = 0$ if $n > 0$
Σ^n, Σ^*, and Σ^+

- $|\Sigma^*| = \infty$
 - Infinity. More precisely, \aleph_0
 - $|\Sigma^*| = |\Sigma^+| = |\mathbb{N}| = \aleph_0$

- How long is the longest string in Σ^*?
- How many infinitely long strings in Σ^*?

no longest string!

none
Languages
Language

• **Definition:** A formal language L is a set of strings over some finite alphabet Σ or, equivalently, an arbitrary subset of Σ^*. *Convention:* Italic Upper case letters denote languages.

• Examples of languages:

 – the empty set \emptyset

 – the set $\{\varepsilon\}$,

 – the set $\{0,1\}^*$ of all boolean finite length strings.

 – the set of all strings in $\{0,1\}^*$ with an odd number of 1’s.

 – The set of all python programs that print “Hello World!”

• There are uncountably many languages (but each language has countably many strings)
Much ado about nothing

• ε is a **string** containing no symbols. It is not a language.

• $\{\varepsilon\}$ is a **language** containing one string: the empty string ε. It is not a string.

• \emptyset is the **empty language**. It contains no strings.
Building Languages

• Languages can be manipulated like any other set.

• Set operations:
 – Union: \(L_1 \cup L_2 \)
 – Intersection, difference, symmetric difference
 – Complement: \(\bar{L} = \Sigma^* \setminus L = \{ x \in \Sigma^* \mid x \notin L \} \)
 – (Specific to sets of strings) concatenation: \(L_1 \cdot L_2 = \{ xy \mid x \in L_1, y \in L_2 \} \)
Concatenation

- \(L_1 \cdot L_2 = L_1L_2 = \{ xy \mid x \in L_1, y \in L_2 \} \) (we omit the bullet often)

 e.g. \(L_1 = \{ \text{fido, rover, spot} \} \), \(L_2 = \{ \text{fluffy, tabby} \} \)

 then \(L_1L_2 = \{ \text{fidofluffy, fidotabby, roverfluffy, …} \} \)

 \(|L_1L_2| = 6 \)

- \(L_1 = \{a,aa\}, L_2 = \emptyset \)

 \(L_1L_2 = \emptyset \)

- \(L_1 = \{a,aa\}, L_2 = \{\varepsilon\} \)

 \(L_1L_2 = L_1 \)
Building Languages

- L^n inductively defined: $L^0 = \{\varepsilon\}$, $L^n = LL^{n-1}$

Kleene Closure (star) L^*

Definition 1: $L^* = \bigcup_{n \geq 0} L^n$, the set of all strings obtained by concatenating a sequence of zero or more strings from L.
Building Languages

- L^n inductively defined: $L^0 = \{\varepsilon\}$, $L^n = LL^{n-1}$

Kleene Closure (star) L^*

Recursive Definition: L^* is the set of strings w such that either

- $w = \varepsilon$ or
- $w = xy$ for x in L and y in L^*
Building Languages

- $\{\varepsilon\}^* = ?$ \(\emptyset^* = \{\varepsilon\}\)

- For any other L, the Kleene closure is infinite and contains arbitrarily long strings. It is the smaller superset of L that is closed under concatenation and contains the empty string.

- **Kleene Plus**

 $$L^+ = LL^*, \text{ set of all strings obtained by concatenating a sequence of at least one string from } L.$$

 —*When is it equal to L^*?*
Regular Languages
Regular Languages

• The set of regular languages over some alphabet Σ is defined inductively by:

• L is empty

• L contains a single string (could be the empty string)

• If L_1, L_2 are regular, then $L = L_1 \cup L_2$ is regular

• If L_1, L_2 are regular, then $L = L_1 L_2$ is regular

• If L is regular, then L^* is regular
Regular Languages Examples

- L = any finite set of strings. E.g., L = set of all strings of length at most 10
- L = the set of all strings of 0’s including the empty string
- Intuitively L is regular if it can be constructed from individual strings using any combination of union, concatenation and unbounded repetition.
Regular Languages Examples

• Infinite sets, but of strings with “regular” patterns
 – Σ^* (recall: L^* is regular if L is)
 – $\Sigma^+ = \Sigma \Sigma^*$
 – All binary integers, starting with 1
 • $L = \{1\}\{0,1\}^*$
 – All binary integers which are multiples of 37
 • later
Regular Expressions
Regular Expressions

• A compact notation to describe regular languages

• Omit braces around one-string sets, use + to denote union and juxtapose subexpressions to represent concatenation (without the dot, like we have been doing).

• Useful in
 – text search (editors, Unix/grep)
 – compilers: lexical analysis
Inductive Definition

A regular expression r over alphabet Σ is one of the following ($L(r)$ is the language it represents):

<table>
<thead>
<tr>
<th>Atomic expressions (Base cases)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$L(\emptyset) = \emptyset$</td>
</tr>
<tr>
<td>w for $w \in \Sigma^*$</td>
<td>$L(w) = {w}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductively defined expressions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(r_1 + r_2)$</td>
<td>$L(r_1 + r_2) = L(r_1) \cup L(r_2)$</td>
</tr>
<tr>
<td>$(r_1 r_2)$</td>
<td>$L(r_1 r_2) = L(r_1)L(r_2)$</td>
</tr>
<tr>
<td>(r^*)</td>
<td>$L(r^) = L(r)^$</td>
</tr>
</tbody>
</table>

Any regular language has a regular expression and vice versa.
Regular Expressions

• Can omit many parentheses
 – By following precedence rules:
 star (*) before concatenation (⋅), before union (+)
 • e.g. \(r^*s + t \equiv ((r^*) s) + t \)
 • 10* is shorthand for \(\{1\} \cdot \{0\}^* \) and NOT \(\{10\}^* \)
 – By associativity: \((r+s)+t \equiv r+s+t \), \((rs)t \equiv rst \)
 – More short-hand notation
 • e.g., \(r^+ \equiv rr^* \) (note: + is in superscript)
Regular Expressions: Examples

• (0+1)*
 – All binary strings

• (((0+1)(0+1))*)
 – All binary strings of even length

• (0+1)*001(0+1)*
 – All binary strings containing the substring 001

• 0* + (0*10*10*10*)*
 – All binary strings with #1s ≡ 0 mod 3

• (01+1)*(0+ε)
 – All binary strings without two consecutive 0s
Exercise: create regular expressions

• All binary strings with either the pattern 001 or the pattern 100 occurring somewhere

 one answer: \((0+1)^*001(0+1)^* + (0+1)^*100(0+1)^*\)

• All binary strings with an even number of 1s

 one answer: \(0^*(10^*10^*)^*\)
Regular Expression Identities

- $r^*r^* = r^*$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+ s^*)^* = (r+s^*)^* = \ldots$
Equivalence

• Two regular expressions are equivalent if they describe the same language. eg.

\[- (0+1)^* = (1+0)^* \text{ (why?)} \]

• Almost every regular language can be represented by infinitely many distinct but equivalent regular expressions

\[- (L \emptyset)^*L\varepsilon + \emptyset = ? \]
Regular Expression Trees

• Useful to think of a regular expression as a tree. Nice visualization of the recursive nature of regular expressions.

• Formally, a regular expression tree is one of the following:
 – a leaf node labeled Ø
 – a leaf node labeled with a string
 – a node labeled + with two children, each of which is the root of a regular expression tree
 – a node labeled • with two children, each of which is the root of a regular expression tree
 – a node labeled * with one child, which is the root of a regular expression tree
A regular expression tree for $\varepsilon + \varepsilon^*1(1\varepsilon^*1 + 01\varepsilon^*)\varepsilon^*$
Not all languages are regular!
Are there Non-Regular Languages?

- Every regular expression over \{0,1\} is itself a string over the 8-symbol alphabet \{0,1,+,*,(,\,),\epsilon, \emptyset\}.

- Interpret those symbols as digits 1 through 8. Every regular expression is a base-9 representation of a unique integer.

- Countably infinite!

- We saw (first few slides) there are uncountably many languages over \{0,1\}.

- In fact, the set of all regular expressions over the \{0,1\} alphabet is a non-regular language over the alphabet \{0,1,+,*,(,\,),\epsilon, \emptyset\}!!