Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ, and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \&, \triangleright\}$ where $\&$ is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

1. On input 1^n, for any non-negative integer n, write $1^n \# 1^n$ on the tape and accept.

2. On input $\#^n 1^m$, for any non-negative integers m and n, write 1^m on the tape and accept. In other words, delete all the $\#$s and shift the 1s to the start of the tape.

3. On input $\#^n 1^n$, for any non-negative integer n, write $\# 2^n$ on the tape and accept. [Hint: Modify the Turing machine from problem 1.]

4. On input 1^n, for any non-negative integer n, write 1^{2^n} on the tape and accept. [Hint: Use the three previous Turing machines as subroutines.]