Let \(L \) be an arbitrary regular language.

1. Prove that the language \(\text{insert}_1(L) := \{ x1y \mid xy \in L \} \) is regular.

Intuitively, \(\text{insert}_1(L) \) is the set of all strings that can be obtained from strings in \(L \) by inserting exactly one \(1 \). For example, if \(L = \{ \epsilon, 00K! \} \), then \(\text{insert}_1(L) = \{ 1, 100K!, 010K!, 001K!, 00K1!, 00K!1 \} \).

2. Prove that the language \(\text{delete}_1(L) := \{ xy \mid x1y \in L \} \) is regular.

Intuitively, \(\text{delete}_1(L) \) is the set of all strings that can be obtained from strings in \(L \) by deleting exactly one \(1 \). For example, if \(L = \{ 101101, 00, \epsilon \} \), then \(\text{delete}_1(L) = \{ 011101, 10101, 10110 \} \).

Work on these later: (In fact, these might be easier than problems 1 and 2.)

3. Consider the following recursively defined function on strings:

\[
\text{stutter}(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
ax \cdot \text{stutter}(x) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x
\end{cases}
\]

Intuitively, \(\text{stutter}(w) \) doubles every symbol in \(w \). For example:

- \(\text{stutter}(\text{PRESTO}) = \text{PPRREESSSTTOO} \)
- \(\text{stutter}(\text{HOCUS} \bullet \text{POCUS}) = \text{HHOOCUSS} \bullet \text{POOCCUSS} \)

Let \(L \) be an arbitrary regular language.

(a) Prove that the language \(\text{stutter}^{-1}(L) := \{ w \mid \text{stutter}(w) \in L \} \) is regular.

(b) Prove that the language \(\text{stutter}(L) := \{ \text{stutter}(w) \mid w \in L \} \) is regular.

4. Consider the following recursively defined function on strings:

\[
\text{evens}(w) := \begin{cases}
\epsilon & \text{if } w = \epsilon \\
\epsilon & \text{if } w = a \text{ for some symbol } a \\
b \cdot \text{evens}(x) & \text{if } w = abx \text{ for some symbols } a \text{ and } b \text{ and some string } x
\end{cases}
\]

Intuitively, \(\text{evens}(w) \) skips over every other symbol in \(w \). For example:

- \(\text{evens}(\text{EXPELLIARMUS}) = \text{XELAMS} \)
- \(\text{evens}(\text{AVADA} \bullet \text{KEDAVRA}) = \text{VD} \bullet \text{EAR} \).

Once again, let \(L \) be an arbitrary regular language.

(a) Prove that the language \(\text{evens}^{-1}(L) := \{ w \mid \text{evens}(w) \in L \} \) is regular.

(b) Prove that the language \(\text{evens}(L) := \{ \text{evens}(w) \mid w \in L \} \) is regular.