This homework is only for practice; it will not be graded. However, similar questions may appear on the final exam, so we still strongly recommend treating this as a regular homework. Solutions will be released next Tuesday as usual.

1. Recall that w^R denotes the reversal of string w; for example, $\text{TURING}^R = \text{GNIRUT}$. Prove that the following language is undecidable.

$$\text{RevAccept} := \{ \langle M \rangle \mid M \text{ accepts } \langle M \rangle^R \}$$

Note that Rice's theorem does not apply to this language.

2. Let M be a Turing machine, let w be an arbitrary input string, and let s be an integer. We say that M accepts w in space s if, given w as input, M accesses only the first s (or fewer) cells on its tape and eventually accepts.

(a) Sketch a Turing machine/algorithm that correctly decides the following language:

$$\{ \langle M, w \rangle \mid M \text{ accepts } w \text{ in space } |w|^2 \}$$

(b) Prove that the following language is undecidable:

$$\{ \langle M \rangle \mid M \text{ accepts at least one string } w \text{ in space } |w|^2 \}$$

3. Consider the language $\text{SometimesHalt} = \{ \langle M \rangle \mid M \text{ halts on at least one input string} \}$. Note that $\langle M \rangle \in \text{SometimesHalt}$ does not imply that M accepts any strings; it is enough that M halts on (and possibly rejects) some string.

(a) Prove that SometimesHalt is undecidable.

(b) Sketch a Turing machine/algorithm that accepts SometimesHalt.
Solved Problem

4. For each of the following languages, either prove that the language is decidable, or prove that the language is undecidable.

(a) \(L_0 = \{ \langle M \rangle \mid \text{given any input string, } M \text{ eventually leaves its start state} \} \)

Solution: We can determine whether a given Turing machine \(M \) always leaves its start state by careful analysis of its transition function \(\delta \). As a technical point, I will assume that crashing on the first transition does not count as leaving the start state.

- If \(\delta(\text{start}, a) = (\cdot, \cdot, -1) \) for any input symbol \(a \in \Sigma \), then \(M \) crashes on input \(a \) without leaving the start state.
- If \(\delta(\text{start}, \sq) = (\cdot, \cdot, -1) \), then \(M \) crashes on the empty input without leaving the start state.
- Otherwise, \(M \) moves to the right until it leaves the start state. There are two subcases to consider:
 - If \(\delta(\text{start}, \sq) = (\text{start}, \cdot, +1) \), then \(M \) loops forever on the empty input without leaving the start state.
 - Otherwise, for any input string, \(M \) must eventually leave the start state, either when reading some input symbol or when reading the first blank.

It is straightforward (but tedious) to perform this case analysis with a Turing machine that receives the encoding \(\langle M \rangle \) as input. We conclude that \(L_0 \) is **decidable**. ■

(b) \(L_1 = \{ \langle M \rangle \mid M \text{ decides } L_0 \} \)

Solution:
- By part (a), there is a Turing machine that decides \(L_0 \).
- Let \(M_{\text{reject}} \) be a Turing machine that immediately rejects its input, by defining \(\delta(\text{start}, a) = \text{reject} \) for all \(a \in \Sigma \cup \{\sq\} \). Then \(M_{\text{reject}} \) decides the language \(\emptyset \neq L_0 \).

Thus, Rice’s Decision Theorem implies that \(L_1 \) is **undecidable**.

(c) \(L_2 = \{ \langle M \rangle \mid M \text{ decides } L_1 \} \)

Solution: By part (b), no Turing machine decides \(L_1 \), which implies that \(L_2 = \emptyset \).

Thus, \(M_{\text{reject}} \) correctly decides \(L_2 \). We conclude that \(L_2 \) is **decidable**.

(d) \(L_3 = \{ \langle M \rangle \mid M \text{ decides } L_2 \} \)

Solution: Because \(L_2 = \emptyset \), we have \(L_3 = \{ \langle M \rangle \mid M \text{ decides } \emptyset \} = \{ \langle M \rangle \mid \text{REJECT}(M) = \Sigma^* \} \)

- We have already seen a Turing machine \(M_{\text{reject}} \) such that \(\text{REJECT}(M_{\text{reject}}) = \Sigma^* \).
- Let \(M_{\text{accept}} \) be a Turing machine that immediately accepts its input, by defining \(\delta(\text{start}, a) = \text{accept} \) for all \(a \in \Sigma \cup \{\sq\} \). Then \(\text{REJECT}(M_{\text{accept}}) = \emptyset \neq \Sigma^* \).

Thus, Rice’s Rejection Theorem implies that \(L_1 \) is **undecidable**.
(e) \(L_4 = \{ \langle M \rangle \mid M \text{ decides } L_3 \} \)

Solution: By part (b), no Turing machine decides \(L_3 \), which implies that \(L_4 = \emptyset \). Thus, \(M_{\text{reject}} \) correctly decides \(L_4 \). We conclude that \(L_4 \) is \textit{decidable}.

At this point, we have fallen into a loop. For any \(k > 4 \), define

\[
L_k = \{ \langle M \rangle \mid M \text{ decides } L_{k-1} \}.
\]

Then \(L_k \) is decidable (because \(L_k = \emptyset \)) if and only if \(k \) is even.

\[\blacksquare\]

Rubric: 10 points: 4 for part (a) + 1½ for each other part.

\begin{center}
\textbf{Rubric (for all undecidability proofs, out of 10 points):}

\textbf{Diagonalization:}
\begin{itemize}
 \item + 4 for correct wrapper Turing machine
 \item + 6 for self-contradiction proof (= 3 for \(\Leftarrow \) + 3 for \(\Rightarrow \))
\end{itemize}

\textbf{Reduction:}
\begin{itemize}
 \item + 4 for correct reduction
 \item + 3 for “if” proof
 \item + 3 for “only if” proof
\end{itemize}

\textbf{Rice’s Theorem:}
\begin{itemize}
 \item + 4 for positive Turing machine
 \item + 4 for negative Turing machine
 \item + 2 for other details (including using the correct variant of Rice’s Theorem)
\end{itemize}
\end{center}