
Undecidability and	Rice’s	Theorem

Lecture	26,	December	3	
CS	374,	Fall	2015

P
NP
EXP

.

.

.

.

.

.

.

.
RECURSIVE

.

.

.R.	E.UNDECIDABLE

Recap:		Universal	TM	U

We	saw	a	TM	U	such	that
L(U) =	{ (z,w)|	Mz accepts	w}	

Thus,	U	 is	a	stored-program	computer.
It	reads	a	program	z	and	executes	it	on	data	w

L(U)	=	{ (z,w)|	Mz accepts	w}	is	r.e.

Recap:		Universal	TM	U

L(U)	=	{ (z,w)|	Mz accepts	w}	is	r.e.

We	proved	the	following:
Theorem:	L(U) is	undecidable	(i.e,	not	recursive)

No	“algorithm”	for	L(U)

P
NP
EXP

.

.

.

.

.

.

.

.
RECURSIVE

.

.

.R.	E.UNDECIDABLE L(U)

Polytime Reductions

X	≤p Y			“X	reduces	to	Y	in	polytime”

Ix REDUCTION
(poly	time)

Y-solver
(poly	time)

IY
YES

NO

X-solver	(polytime)

If	X	can’t	be	decided	in	poly	time,	then	Y	can’t	be	decided	in	poly	time
If	Y		can	be	decided	in	poly	time,	then	X	can	be	decided	in	poly	time

X	≤	Y			“X	reduces	to	Y	in	polytime”

Ix REDUCTION
(poly	time)

Y-solver
(poly	time)

IY
YES

NO

X-solver	(polytime)

Polytime Reductions

If	X	can’t	be	decided	in	poly	time,	then	Y	can’t	be	decided	in	poly	time
If	Y		can	be	decided	in	poly	time,	then	X	can	be	decided	in	poly	time

X	≤	Y			“X	reduces	to	Y”

Ix REDUCTION Y-solver
IY

YES

NO

X-solver	

Reduction

If	X	can’t	be	decided,	then	Y	can’t	be	decided
If	Y		can	be	decided,	then	X	can	be	decided.

Halting	Problem

• Does	given	M halt	when	run	on	blank	input?
• HALT	=	{	z	|	Mz halts	when	run	on	blank	input}
• Show	HALT	is	undecidable	by	showing	

L(U)≤	HALT

REDUCTION HALT	
decider

YES

NO

L(U)-decider

What	are	input	and	output	of	the	reduction?

L(U) ≤	HALT

REDUCTION HALT	
decider

YES

NO

L(U)-decider

(z,w) z’

Need:			Mz’ halts	on	blank	input	iffMz accepts	w

TM	Mz’
const z
const	w

run	Mz on	w and	halt	if	it	accepts	
otherwise	run	for	ever

The	REDUCTION	doesn’t	run	Mz on	w.	It	produces	code	for	Mz’ !

L(U) ≤	HALT

REDUCTION HALT	
decider

YES

NO

L(U)-decider

(z,w) z’

Need:			Mz’ halts	on	blank	input	iffMz accepts	w

TM	Mz’
const z
const	w

run	Mz on	w and	halt	if	it	accepts

Correctness:			L(U)-decider	say	“yes”	iffMz’ halts	on	blank	input
iffMz accepts	w
iff (z,w)	is	in	L(U)

P
NP
EXP

.

.

.

.

.

.

.

.
RECURSIVE

.

.

.R.	E.UNDECIDABLE L(U)
HALT

Who	cares	about	halting	TMs?

• Remember,	TMs	=	programs
• Virtually	all	math	conjectures	can	be	expressed	
as	a	halting-TM	question.

Example:			Goldbach’s conjecture:		
Every	even	number	>	2	is	the	sum	of	two	
primes.

Program	Goldbach
goldbach()
n =	4
WHILE is-sum-of-two-primes(n)

n =	n+2
STOP	AND SAY NO

is-sum-of-two-primes(n):	boolean
FOR p ≤	q <	n

IF p,q,	prime	AND p+q=n THEN RETURN TRUE

RETURN FALSE

goldbach()	halts	iff Goldbach’s conjecture	is	false

Deciding	mathematical	truth

prove-theorem(T)
w =	“	”
WHILE NOT is-a-proof-of	(w,T)	

w =	lexicographically-next-string(w)
OUTPUT T	+	“is	true”

prove-theorem(T)	halts	iff there	is	a	proof	of	T.

CS	125	assignment:

• Write	a	program	that	outputs	“Hello	world”.

main()
{			printf(“Hello	world”);
}

• Can	we	write	an	auto-grader?
• If	so;	we	can	solve	Goldbach’s conjecture...

goldbach()
n =	4
WHILE is-sum-of-two-primes(n)

n =	n+2
STOP	AND SAY NO

is-sum-of-two-primes(n):	boolean
FOR p ≤	q <	n

IF p,q,	 prime	AND p+q=n
THEN RETURN TRUE

RETURN FALSE

main()

{		
printf(“Hello world”);
}

AUTOGRADER
CORRECT

INCORRECTgoldbach();

Deciding	halting	problem

main()

{		
printf(“Hello world”);
}

AUTOGRADER
CORRECT

INCORRECTMz()

• Given	string	z,	to	determine	if	program	Mz
halts,	do	the	following:

So,	deciding	if	a	program	
prints	“Hello	world”	is	
solving	the	halting	problem

Using	same	ideas,	we	can	
show	that	deciding	
anything	about	code	
behavior	is	not	possible

More	reductions	about	languages

• We’ll	show	other	languages	involving	program	
behavior	are	undecidable:

• L374 =	{<M>	|	L(M)	=	{0374}	}
• L≠Ø =			{<M>	|	L(M)	is	nonempty}	
• Lpal =		{<M>	|	L(M)	=	palindromes}	
• many	many	others

L374 =	{	z	|	L(Mz)	=	{0374}	}	is	undecidable

• Given	a	TM	M,	telling	whether	it	accepts	only	
the	string	0374 is	not	possible

• Proved	by	showing			HALT≤	L374
z

REDUCTION:	BUILD	z’
Mz’	:		constant:		z

On	input	x,	
0.		if	x ≠	0374,	reject
1.	if	x =	0374,	then
2.	run	Mz

accept	x	iffMz
halts

xWhat	is	L(Mz’)	?
• If	Mz halts,	L(Mz’)	=	
• If	Mz doesn’t	L(Mz’)	=	

{0374}
Ø

Q:				How	does	the	reduction	know	whether	or	not	Mz halts	?
A:	It	doesn’t	have	to.		It	just	builds (code	for)	Mz’

z’	=
instance	of	HALT instance	of	L374

M374

Decider	for	HALT

z z’ YES:		
L(Mz’)	=		{0374}	
iff Mz halts

NO:	
L(M’)	=	Ø	≠	{0374}	
iffMz does	not	halt

If	there	is	a	decider	M374 to	tell	if	a	TM	accepts	the	language	{0374}...

REDUCTION:	BUILD	z’

Mz’	:		constant:		z

On	input	x,	
0.		if	x ≠	0374,	reject
1.	if	x =	0374,	then
2.	run	Mz

accept	x	iffMz
halts

x

Since	HALT	is	not	decidable,	M374 doesn’t	exist,	and	L374	is	undecidable

Recall	L(M’)	=	{0374}	
iffM(w)	accepts	

L≠Ø =	{<M>	|	L(M)	is	nonempty}	is	undecidable

• Given	a	TM	M,	telling	whether	it	accepts							
any	string	is	undecidable

• Proved	by	showing			HALT≤	L≠Ø
z

REDUCTION:	BUILD	z’

We	want	Mz’ to	satisfy:
• If	Mz halts,	L(Mz’)		
• If	Mz doesn’t		L(Mz’)

≠	Ø
=	Ø

z’ =
instance	of	HALT instance	of	L≠Ø

If	Mzhalts,	L(Mz’) =	Σ* hence	≠	Ø
If	Mz doesn’t,	L(Mz’) =	Ø

Mz’	:		constant:		z

On	input	x,	
Run	Mz
Accept	x	if	Mz
halts

x

Lpal =	{	z	|	L(Mz)	=	palindromes}	is	undecidable

• Given	a	TM	M,	telling	whether	it	accepts							
the	set	of	palindromes	is	undecidable

• Proved	by	showing			HALT≤	Lpal
z

REDUCTION:	BUILD	z’
Mz’	:		constant:		z

On	input	x,	
xWe	want	Mz’ to	satisfy:

• If	Mz halts,	L(Mz’)		
• If	Mz doesn’t	L(Mz’)	

=	{palindromes}	
≠	{palindromes}

z’ =
instance	of	HALT instance	of	Lpal

Run	Mz
Accept	x if

Mz halts	and	
x is	a	palindrome

Lots	of	undecidable problems	about	
languages	accepted	by	programs

• Given	M,	is	L(M)	=	{palindromes}?
• Given	M,	is	L(M)	≠	Ø?
• Given	M,	is	L(M)	=	{0374}	?
• Given	M,	is	L(M)	=	{0p |p is	prime}?
• Given	M,	does	L(M)	contain	any	prime?
• Given	M,	does L(M)	contain	any	word?
• Given	M,	does	L(M)	meet	these	formal	specs?
• Given	M,	does	L(M)	=	Σ* ?

Rice’s	Theorem

• Q:	What	can	we	decide	about	the	languages	
accepted	by	programs?

A:		NOTHING	!
except	“trivial”	things

Properties	of	r.e.	languages
• A	Property	of	r.e.	languages is	a	predicate	P of	r.e.	
languages.

i.e.,	P:	{L |	L is	r.e.}	à {true,	false}

Important: we	are	only	interested	in	r.e languages

• Examples:
• P(L)	=	“L contains	0374”
• P(L)	=	“L contains	at	least	5	strings”
• P(L)	=	“L	is	empty”
• P(L)	=	“L	=	{0n1n|	n ≥	0}”

Properties	of	r.e.	languages
• A	Property	of	r.e.	languages is	a	predicate	P of	r.e.	
languages.

i.e.,	P:	{L |	L is	r.e.}	à {true,	false}
L	=	L(M)	for	some	TM	iff L	is	r.e by	definition.

• We	will	thus	think	of	a	Property	of	r.e.	languages	as	
a	set		{	z	|	L(Mz)	satisfies	predicate	P}

• Note	that	each	property	P	is	thus	a	set	of	strings	
L(P)	=	{	z	|	L(Mz)	satisfies	predicate	P}

• Question:	For	which	P	is	L(P)	decidable?

Trivial	Properties

• A	property	is	trivial if	either	all	r.e.	languages	
satisfy	it,	or	no	r.e.	languages	satisfy	it.

• {	z	|	L(Mz)	is	r.e}....	why	is	this	“trivial”	?
– EVERY	language	accepted	by	an	M is	r.e.	by	def’n

• {	z	|	L(Mz)	is	not	r.e}....	why	is	this	“trivial”	?
• {	z|	L(Mz)	=	Ø	or	L(Mz)	≠Ø}....		why	“trivial”?
• Clearly,	trivial	properties	are	decidable
• Because	if	P	is	trivial	then	L(P)	=	Ø or	L(P)	=	Σ*	

Rice’s	Theorem

Every nontrivial	property	of				
r.e.	languages	is	undecidable

So,	there	is	virtually	nothing	we	can	decide	about	behavior	
(language	accepted)	by	programs	

Example:	auto-graders	don’t	exist	(if	submissions	are	allowed	to	
run	an	arbitrary	(but	finite)	amount	of	time).

Proof

• Let	P be	a	non-trivial	property
• Let	L(P)	= {	z	|	L(Mz)	satisfies	predicate	P}
• Show L(P)	 is	undecidable
• Assume	Ø	does	not	satisfy	P
• Assume	L(MP-sat)	satisfies	P	for	some	TM	MP-sat

There	must	be	at	least	one	such TM		(why?)

MP

Decider	for	HALT

z z’ YES:		
L(Mz’)	satisfies	P
iff Mz halts

NO:	
L(Mz’)	=	Ø	doesn’t	 satisfy	P
iffMz does	not	halt

If	there	is	a	decider	MP to	tell	if	a	TM	accepts	a	language	satisfying	P...

REDUCTION:	BUILD	z’

Since	HALT	is	not	decidable,	MP doesn’t exist,	and	L(P)	 is	undecidable

Mz’:		constant:		z

On	input	x,	
x Run	Mz

Accept	x if
??	blah	blah	blah	??Mz halts	and	MP-sat
accepts	x

If	Mz doesn’t	halt	then	L(Mz’)	=
If	Mz does	halt		then	L(Mz’)	=

Ø
L(MP-sat)

What	about	assumption
• We	assumed	Ø	does	not	satisfy	P
• What	if	Ø	does	satisfy	P?
• Then	consider	

L(P’) =	{	<M>	|	L(M)	doesn’t	satisfy	predicate	P}
• Then	Ø	isn’t	in	L(P’)
• Show	L(P’) is	undecidable
• So	L(P) isn’t	either	(by	closure	under	
complement)

Properties	of	r.e Languages	are	Not	
properties	of	programs/TMs

• P is	defined	on	languages,	not	the	machines	
which	might	accept	them.

• {<M>	|	M at	some	point	moves	its	head	left}
is	a	property	of	the	machine	behavior,	not	the	
language	accepted.

• {<A.py>	|	program	A	has	374	lines	of	code}
• {<A.py>	|	A accepts	“Hello	World”}

this	really	is	a	predicate	on	L(A)

Properties	about	TMs

• sometimes	decidable:
– {	z|	Mz has	374	states}	
– {	z|	Mz uses	≤		374	tape	cells	on	blank	input}
• 374	x |Γ|32	 x |QM|

– {	z|	Mz never	moves	head	to	left}	
• sometimes	undecidable
– {	z|	Mz halts	on	blank	input}	
– {	z|	Mz ,	on	input	“0110”,	eventually	writes	“2”}	

Today

• Quick	recap	– halting	&	undecidability
• Undecidability via	reductions
• Rice’s	theorem
• ICES
– pick	up	TWO	forms	(Chandra	+	Manoj)
– return	to	same	location

Final	Thoughts

Theory	of	Computation	and	Algorithms	are	
fundamental	to	Computer	Science

Of	immense	pragmatic	importance	
Of	great	interest	to	mathematics
Of	great	interest	to	natural	sciences	(physics,	
biology,	chemistry)
Of	great	interest	to	social	sciences	too!	

Final	Thoughts

Grades	are	important	but	only	in	short	term
No	one	will	ask	you	how	well	you	did	in	CS	374	
in	a	year	or	two

Use	your	algorithmic/theory/analytical	 skills	to	
differentiate	yourself	from	other	IT	professionals

Other	Theory	Courses

• “new”	473	(Theory	2)	Jeff	in	Spring’16,		
Chandra	in	Fall’16

• Approximation	algorithms	(Chandra	Spring’16)
• Computational	Complexity	(Kolla,	Spring’16)
• Algorithmic	Game	Theory	(Mehta,	Spring	‘16)
• Randomized	algorithms,	Data	structures,	
Computational	Geometry,	Algorithms	for	Big	
Data	…

Other	“Theory	ish”	Courses

• Machine	learning,	statistical	learning,	…
• Logic	and	formal	methods
• Graph	theory,	combinatorics,	…
• Coding	theory,	information	theory,	signal	
processing

• Computational	biology

Thanks!

