Undecidability and Rice’s Theorem

Lecture 26, December 3
CS 374, Fall 2015
UNDECIDABLE

R. E.

RECURSIVE

EXP

NP

P

NPC
Recap: Universal TM U

We saw a TM U such that

$$L(U) = \{ (z,w) \mid M_z \text{ accepts } w \}$$

Thus, U is a stored-program computer. It reads a program z and executes it on data w

$$L(U) = \{ (z,w) \mid M_z \text{ accepts } w \}$$ is r.e.
Recap: Universal TM U

\[L(U) = \{ (z,w) \mid M_z \text{ accepts } w \} \text{ is r.e.} \]

We proved the following:

Theorem: \(L(U) \) is undecidable (i.e., not recursive)

No "algorithm" for \(L(U) \)
P

NP

EXP

RECURSIVE

R. E.

UNDECIDABLE

L(U)

NP

NPC

P
Polytime Reductions

\(X \leq_p Y \) “X reduces to Y in polytime”

If Y can be decided in poly time, then X can be decided in poly time.
If X can’t be decided in poly time, then Y can’t be decided in poly time.
Polytime Reductions

\(X \leq Y \) “\(X \) reduces to \(Y \) in polytime”

If \(Y \) can be decided in polytime, then \(X \) can be decided in polytime.

If \(X \) can’t be decided in polytime, then \(Y \) can’t be decided in polytime.
Reduction

\[X \leq Y \quad \text{“} \ X \text{ reduces to } Y \text{”} \]

If \(Y \) can be decided, then \(X \) can be decided.

If \(X \) can’t be decided, then \(Y \) can’t be decided.
Halting Problem

- Does given M halt when run on blank input?
- $HALT = \{ z \mid M_z \text{ halts when run on blank input} \}$
- Show $HALT$ is undecidable by showing $L(U) \leq HALT$

$L(U)$-decider

What are input and output of the reduction?
$L(U) \leq \text{HALT}$

Need: $M_{z'}$ halts on blank input iff M_z accepts w

- **TM $M_{z'}$**
 - `const z`
 - `const w`
 - run M_z on w and halt if it accepts
 - otherwise run for ever

The REDUCTION doesn't run M_z on w. It produces code for $M_{z'}$!
$L(U) \leq HALT$

Need: $M_{z'}$ halts on blank input iff M_z accepts w

Correctness: $L(U)$-decider say “yes” iff $M_{z'}$ halts on blank input

iff M_z accepts w

iff (z, w) is in $L(U)$
Who cares about halting TMs?

• Remember, TMs = programs
• Virtually all math conjectures can be expressed as a halting-TM question.

Example: Goldbach’s conjecture:

Every even number > 2 is the sum of two primes.
Program Goldbach

goldbach()

\[n = 4 \]

WHILE is-sum-of-two-primes(n)

\[n = n+2 \]

STOP AND SAY NO

is-sum-of-two-primes(n): boolean

FOR \(p \leq q < n \)

IF \(p, q, \) prime AND \(p+q = n \) THEN RETURN TRUE

RETURN FALSE

goldbach() halts iff Goldbach’s conjecture is false
Deciding mathematical truth

prove-theorem(T)
 w = " "
 WHILE NOT is-a-proof-of (w,T)
 w = lexicographically-next-string(w)
 OUTPUT T + "is true"

prove-theorem(T) halts iff there is a proof of T.
CS 125 assignment:

• Write a program that outputs “Hello world”.

```c
main()
{
    printf(“Hello world”);
}
```

• Can we write an auto-grader?

• If so; we can solve Goldbach’s conjecture...
goldbach()
 n = 4
 WHILE is-sum-of-two-primes(n)
 n = n+2
 STOP AND SAY NO

is-sum-of-two-primes(n): boolean
 FOR p ≤ q < n
 IF p,q, prime AND p+q=n
 THEN RETURN TRUE
 RETURN FALSE

main()
 { goldbach();
 printf("Hello world");
 }
Deciding halting problem

- Given string z, to determine if program M_z halts, do the following:

So, deciding if a program prints “Hello world” is solving the halting problem

```
main()
{
    M_z();
    printf("Hello world");
}
```

Using same ideas, we can show that deciding anything about code behavior is not possible

Correct

Incorrect
More reductions about languages

- We’ll show other languages involving program behavior are undecidable:
 - \(L_{374} = \{<M> \mid L(M) = \{0^{374}\} \} \)
 - \(L_{\neq \emptyset} = \{<M> \mid L(M) \text{ is nonempty}\} \)
 - \(L_{\text{pal}} = \{<M> \mid L(M) = \text{palindromes}\} \)
 - *many many* others
$L_{374} = \{ \text{z} \mid L(M_\text{z}) = \{0^{374}\} \}$ is undecidable

- Given a TM M, telling whether it accepts only the string 0^{374} is not possible
- Proved by showing $HALT \leq L_{374}$

REDUCTION: BUILD z'

- z' = instance of L_{374}
- z = instance of HALT

What is $L(M_\text{z}')$?
- If M_z halts, $L(M_\text{z}') = \{0^{374}\}$
- If M_z doesn’t halt, $L(M_\text{z}') = \emptyset$

Q: How does the reduction know whether or not M_z halts?

A: It doesn’t have to. It just *builds* (code for) M_z'.
main()
{
 read input
 run M_2()
 if (x = 0^{374})
 	accept
 else
 	reject

accept x
If there is a decider M_{374} to tell if a TM accepts the language $\{0^{374}\}$...

Decider for HALT

- **REDUCTION: BUILD z'**
 - $M_{z'}$: constant: z
 - On input x,
 0. if $x \neq 0^{374}$, reject
 1. if $x = 0^{374}$, then
 2. run M_z
 accept x iff M_z halts

- $z' \rightarrow M_{374}$

YES:

$L(M_{z'}) = \{0^{374}\}$
iff M_z halts

NO:

$L(M') = \emptyset \neq \{0^{374}\}$
iff M_z does not halt

Since HALT is not decidable, M_{374} doesn't exist, and L_{374} is undecidable.
$L_{\neq \emptyset} = \{ \langle M \rangle \mid L(M) \text{ is nonempty} \}$ is undecidable

- Given a TM M, telling whether it accepts any string is undecidable
- Proved by showing $\text{HALT} \leq L_{\neq \emptyset}$

We want $M_{z'}$ to satisfy:
- If M_z halts, $L(M_{z'}) \neq \emptyset$
- If M_z doesn’t $L(M_{z'}) = \emptyset$

If M_z halts, $L(M_{z'}) = \Sigma^*$ hence $\neq \emptyset$
If M_z doesn’t, $L(M_{z'}) = \emptyset$
\(L_{pal} = \{ z \mid L(M_z) = \text{palindromes} \} \) is undecidable

- Given a TM \(M \), telling whether it accepts the set of palindromes is undecidable
- Proved by showing \(HALT \leq L_{pal} \)

Reduction: Build \(z' \)

\(z \) instance of \(HALT \) \(\Rightarrow \) \(z' = \) instance of \(L_{pal} \)

We want \(M_{z'} \) to satisfy:
- If \(M_z \) halts, \(L(M_{z'}) = \{ \text{palindromes} \} \)
- If \(M_z \) doesn't halt, \(L(M_{z'}) \neq \{ \text{palindromes} \} \)

On input \(x \),
- Run \(M_z \)
- Accept \(x \) if \(M_z \) halts and \(x \) is a palindrome
Lots of undecidable problems about languages accepted by programs

- Given M, is $L(M) = \{\text{palindromes}\}$?
- Given M, is $L(M) \neq \emptyset$?
- Given M, is $L(M) = \{0^{374}\}$?
- Given M, is $L(M)$ contain any prime?
- Given M, does $L(M)$ contain any word?
- Given M, does $L(M)$ meet these formal specs?
- Given M, does $L(M) = \Sigma^*$?
Rice’s Theorem

• *Q:* What can we decide about the languages accepted by programs?

A: NOTHING!

except “trivial” things
Properties of r.e. languages

- A *Property of r.e. languages* is a predicate P of r.e. languages.

i.e., $P: \{L \mid L \text{ is r.e.}\} \to \{\text{true, false}\}$

Important: we are only interested in r.e languages

- Examples:
 - $P(L) =$ “L contains 0^{374}”
 - $P(L) =$ “L contains at least 5 strings”
 - $P(L) =$ “L is empty”
 - $P(L) =$ “$L = \{0^n1^n \mid n \geq 0\}$”
Properties of r.e. languages

• A Property of r.e. languages is a predicate P of r.e. languages.

i.e., P: $\{L \mid L \text{ is r.e.}\} \rightarrow \{\text{true, false}\}$

$L = L(M)$ for some TM iff L is r.e by definition.

• We will thus think of a Property of r.e. languages as a set
 $\{z \mid L(M_z) \text{ satisfies predicate } P\}$

• Note that each property P is thus a set of strings
 $L(P) = \{z \mid L(M_z) \text{ satisfies predicate } P\}$

• **Question:** For which P is $L(P)$ decidable?
Trivial Properties

• A property is trivial if either all r.e. languages satisfy it, or no r.e. languages satisfy it.

• \{ z \mid L(M_z) \text{ is r.e}\}.... why is this “trivial”?
 – EVERY language accepted by an M is r.e. by def’n

• \{ z \mid L(M_z) \text{ is not r.e}\}.... why is this “trivial”?

• \{ z \mid L(M_z) = \emptyset \text{ or } L(M_z) \neq \emptyset\}.... why “trivial”?

• Clearly, trivial properties are decidable

• Because if P is trivial then \(L(P) = \emptyset \text{ or } L(P) = \Sigma^* \)
Rice’s Theorem

Every nontrivial property of r.e. languages is undecidable

So, there is virtually nothing we can decide about behavior (language accepted) by programs

Example: auto-graders don’t exist (if submissions are allowed to run an arbitrary (but finite) amount of time).
Proof

• Let P be a non-trivial property
• Let $L(P) = \{ z \mid L(M_z) \text{ satisfies predicate } P \}$
• Show $L(P)$ is undecidable
• Assume \emptyset does not satisfy P
• Assume $L(M_{P\text{-sat}})$ satisfies P for some TM $M_{P\text{-sat}}$

 There must be at least one such TM (why?)
If there is a decider M_p to tell if a TM accepts a language satisfying P...

Decider for HALT

- **REDUCTION: BUILD z'**
 - $M_{z'}$: constant: z
 - On input x,
 - Run M_z
 - Accept x if M_z halts and $M_{P\text{-sat}}$ accepts x

- YES:
 - $L(M_{z'})$ satisfies P iff M_z halts

- NO:
 - $L(M_{z'}) = \emptyset$ doesn't satisfy P iff M_z does not halt

If M_z doesn't halt then $L(M_{z'}) = \emptyset$
If M_z does halt then $L(M_{z'}) = L(M_{P\text{-sat}})$

Since HALT is not decidable, M_p doesn't exist, and $L(P)$ is undecidable.
What about assumption

• We assumed \emptyset does not satisfy P
• What if \emptyset does satisfy P?
• Then consider
 \[
 L(P') = \{ <M> \mid L(M) \text{ doesn't satisfy predicate } P \}
 \]
• Then \emptyset isn't in $L(P')$
• Show $L(P')$ is undecidable
• So $L(P)$ isn't either (by closure under complement)
Properties of r.e Languages are Not properties of programs/TMs

• P is defined on languages, not the machines which might accept them.
• $\{<M> \mid M \text{ at some point moves its head left}\}$ is a property of the *machine behavior*, not the language accepted.
• $\{<A.py> \mid \text{program } A \text{ has 374 lines of code}\}$
• $\{<A.py> \mid A \text{ accepts “Hello World”}\}$
 this really is a predicate on $L(A)$
Properties about TMs

• sometimes decidable:
 – \{ z | M_z has 374 states\}
 – \{ z | M_z uses \leq 374 tape cells on blank input\}
 • \(374 \times |\Gamma|^3 \times |Q_M| \)
 – \{ z | M_z never moves head to left\}

• sometimes undecidable
 – \{ z | M_z halts on blank input\}
 – \{ z | M_z, on input “0110”, eventually writes “2”\}
Today

• Quick recap – halting & undecidability
• Undecidability via reductions
• Rice’s theorem
• ICES
 – pick up TWO forms (Chandra + Manoj)
 – return to same location
Final Thoughts

Theory of Computation and Algorithms are fundamental to Computer Science

Of immense pragmatic importance
Of great interest to mathematics
Of great interest to natural sciences (physics, biology, chemistry)
Of great interest to social sciences too!
Final Thoughts

Grades are important but only in short term
No one will ask you how well you did in CS 374 in a year or two

Use your algorithmic/theory/analytical skills to differentiate yourself from other IT professionals
Other Theory Courses

• “new” 473 (Theory 2) Jeff in Spring’16, Chandra in Fall’16
• Approximation algorithms (Chandra Spring’16)
• Computational Complexity (Kolla, Spring’16)
• Algorithmic Game Theory (Mehta, Spring ‘16)
• Randomized algorithms, Data structures, Computational Geometry, Algorithms for Big Data ...
Other “Theory ish” Courses

- Machine learning, statistical learning, …
- Logic and formal methods
- Graph theory, combinatorics, …
- Coding theory, information theory, signal processing
- Computational biology
Thanks!