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P and NP and Turing Machines

@ P: set of decision problems that have polynomial time
algorithms.

@ NP: set of decision problems that have polynomial time
verification algorithms.

@ Many natural problems we would like to solve are in NP.

@ Every problem in NP has an exponential time algorithm (try
verifying each possible certificate).

o PC NP

@ So some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.
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“Hardest” Problems
What is the hardest problem in NP? How do we define it? l

Towards a definition

© Hardest problem must be in NP.

© Hardest problem must be at least as “difficult” as every other
problem in NP.
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NP-Complete Problems

Definition

A problem X is said to be NP-Complete if
Q@ X € NP, and
@ (Hardness) Forany Y € NP, Y <p X.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

Q@ X € NP, and
© (Hardness) For any Y € NP, Y <p X.

Recall reduction: Y <p X means that an instance of Y can be
efficiently modeled as an instance of X.
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Solving NP-Complete Problems

Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
=> Suppose X can be solved in polynomial time

@ Let Y € NP. We know Y <p X.
@ We showed that if Y <p X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
@ Thus, every problem Y &€ NP is such that Y € P; NP C P.

O Since P C NP, we have P = NP.
<= Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O
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NP-Hard Problems

Definition

A problem X is said to be NP-Hard if
© (Hardness) For any Y € NP, we have that Y <p X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete
@ Since we believe P # NP,
@ and solving X implies P = NP.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
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Consequences of proving NP-Completeness

If X is NP-Complete

@ Since we believe P # NP,

@ and solving X implies P = NP.
X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Are there any “natural” problems that are NP-Complete? l
Yes! Many, many important problems are NP-Complete. \
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show
@ SAT isin NP.
@ every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Chandra & Lenny (UIUC) CS374 10 Spring 2015 10 / 37



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
@ Show that X is in NP.

@ Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X

SAT <p X implies that every NP problem Y <p X. Why?
Transitivity of reductions:

Y <p SAT and SAT <p X and hence Y <p X.

Chandra & Lenny (UIUC) CS374 11 Spring 2015 11 /37



is NP-Complete

e 3-SAT isin NP
o SAT <p 3-SAT as we saw
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NP-Completeness via Reductions

SAT is NP-Complete due to Cook-Levin theorem
SAT <p 3-SAT

3-SAT <p Independent Set

Independent Set <p Vertex Cover
Independent Set <p Clique

3-SAT <p 3-Color

3-SAT <p Hamiltonian Cycle
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NP-Completeness via Reductions

SAT is NP-Complete due to Cook-Levin theorem
SAT <p 3-SAT

3-SAT <p Independent Set

Independent Set <p Vertex Cover
Independent Set <p Clique

3-SAT <p 3-Color

3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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NP-Completeness via Reductions
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Part 1l

Reducing 3-SAT to Independent

Set

Chandra & Lenny (UIUC) Spring 2015 15 / 37



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size k?
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢
Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢
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3SAT <p Independent Set

The reduction 3SAT <p Independent Set

Input: Given a 3CNF formula ¢

Goal: Construct a graph G, and number k such that G, has an
independent set of size k if and only if ¢ is satisfiable.

G, should be constructable in time polynomial in size of ¢

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only 3CNF formulas — reduction would not work
for other kinds of boolean formulas.
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Interpreting 3SAT

There are two ways to think about 3SAT
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Interpreting 3SAT

There are two ways to think about 3SAT

© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.
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Interpreting 3SAT

There are two ways to think about 3SAT

© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

@ Pick a literal from each clause and find a truth assignment to
make all of them true
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Interpreting 3SAT

There are two ways to think about 3SAT
© Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

@ Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick x; and —x;

We will take the second view of 3SAT to construct the reduction.
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The Reduction

© G, will have one vertex for each literal in a clause

C) D @
®@®6 6 @

Figure: Graph for
Y= (—|x1 V x2 V X3) N (X1 V —x2 V X3) N (—|X1 V x2 V X4)
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

C) (=2 )
& @@ @ E @

Figure: Graph for
Y= (—|x1 V x2 V X3) N (X1 V —x2 V X3) AN (—|X1 V xo V X4)
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true
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The Reduction

@ G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

& B
)] )] =

Figure: Graph for
Y= (—|X1 V x2 V X3) N (X1 V —x2 V X3) AN (—|X1 V xo V X4)
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The Reduction

© G, will have one vertex for each literal in a clause

@ Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

© Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

@ Take k to be the number of clauses

Figure: Graph for
p = (—|x1 V x2 V X3) N (X1 V —x2 V X3) N (—|X1 V x2 V X4)
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Correctness

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.
= Let a be the truth assignment satisfying ¢
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Correctness

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.

= Let a be the truth assignment satisfying ¢
@ Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why? O

’
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Correctness (contd)

@ Is satisfiable iff G, has an independent set of size k (= number of
clauses in ¢).

4

Proof.
< Let S be an independent set of size k

@ S must contain exactly one vertex from each clause

@ S cannot contain vertices labeled by conflicting literals

@ Thus, it is possible to obtain a truth assignment that makes in
the literals in S true; such an assignment satisfies one literal in
every clause [

v
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Part |11

NP-Completeness of Hamiltonian

Cycle
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?
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Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?

@ A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once
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Is the following graph Hamiltonian?

(A) Yes.
(B) No.
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Directed Hamiltonian Cycle is NP-Complete

@ Directed Hamiltonian Cycle is in NP: Why?

@ Hardness: We will show
3-SAT <p Directed Hamiltonian Cycle
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Given 3-SAT formula ¢ create a graph G, such that
@ G, has a Hamiltonian cycle if and only if ¢ is satisfiable

@ G, should be constructible from ¢ by a polynomial time
algorithm A

Notation: ¢ has n variables x1, x2, ..., X, and m clauses

G, Gy...,Cp.
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Reduction: First ldeas

@ Viewing SAT: Assign values to n variables, and each clause has
multiple ways in which it can be satisfied.

@ Construct graph with 2" Hamiltonian cycles, where each cycle
corresponds to some boolean assignment.

@ Then add more graph structure to encode constraints on
assignments imposed by the clauses.

Chandra & Lenny (UIUC) CS374 27 Spring 2015 27 / 37



The Reduction: Phase |

@ Traverse path i from left to right iff x; is set to true
e Each path has 3(m + 1) nodes where m is number of clauses in
; nodes numbered from left to right (1 to 3m + 3)
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |

~
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

z1 V g V x4 | " Buffer” vertices |—|m1 V o V T3 |
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

.%'1\/—|112\/IE4 |—|l‘1\/—|l‘2V—|.’L‘3 |

O=—0—0 O O O O O T
==0—"0 O O O O O—=0 X2
Q=0 O O O O O O—=0 X3
—
® O O O O O O O 20 T4
o,
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.
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The Reduction: Phase Il

@ Add vertex ¢; for clause C;. ¢ has edge from vertex 3j and to
vertex 3j + 1 on path i if x; appears in clause C;, and has edge
from vertex 3j + 1 and to vertex 3j if —x; appears in C;.

1V x2 V Ty |—|l‘1\/—|l‘2V—|.’L‘3 |
O
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Correctness Proof

Proposition
@ has a satisfying assignment iff G, has a Hamiltonian cycle.

=> Let a be the satisfying assignment for . Define Hamiltonian
cycle as follows

o If a(x;) = 1 then traverse path i from left to right

o If a(x;) = 0 then traverse path i from right to left

o For each clause, path of at least one variable is in the “right”
direction to splice in the node corresponding to clause O

v
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Hamiltonian Cycle = Satisfying assignment

Suppose I is a Hamiltonian cycle in G,

o If M enters ¢; (vertex for clause C;) from vertex 3j on path i
then it must leave the clause vertex on edge to 35 + 1 on the
same path i

e If not, then only unvisited neighbor of 3j 4+ 1 on path i is 3j + 2
e Thus, we don't have two unvisited neighbors (one to enter
from, and the other to leave) to have a Hamiltonian Cycle

o Similarly, if I enters ¢j from vertex 3j 4+ 1 on path i then it
must leave the clause vertex c; on edge to 3j on path i
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Hamiltonian Cycle == Satisfying assignment

(contd)

@ Thus, vertices visited immediately before and after C; are
connected by an edge

@ We can remove ¢; from cycle, and get Hamiltonian cycle in
G — (o

o Consider Hamiltonian cycle in G — {c1,...Cn}; it traverses

each path in only one direction, which determines the truth
assignment
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Hamiltonian Cycle

Problem
Input Given undirected graph G = (V, E)
Goal Does G have a Hamiltonian cycle? That is, is there a
cycle that visits every vertex exactly one (except start
and end vertex)?
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NP-Completeness

Hamiltonian cycle problem for undirected graphs is
NP-Complete.

@ The problem is in NP; proof left as exercise.

@ Hardness proved by reducing Directed Hamiltonian Cycle to this
problem H
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian cycle iff G’ has Hamiltonian cycle
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian cycle iff G’ has Hamiltonian cycle

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

(@ (©
V)
(b) €)
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian cycle iff G’ has Hamiltonian cycle

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

(@ (© @)
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph
G’ such that G has Hamiltonian cycle iff G’ has Hamiltonian cycle

Reduction
@ Replace each vertex v by 3 vertices: vj,, v, and Vou:

o A directed edge (x,y) is replaced by edge (Xouts Yin)

(@ (© @)
V) V—v)—o
(b) €) b9
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Reduction: Wrapup

@ The reduction is polynomial time (exercise)

@ The reduction is correct (exercise)
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