P and NP

Lecture 22
Today

Computational Complexity

P, NP, PSPACE, EXP

NP-completeness

Non-deterministic Turing Machines
Resource Bounded Computation

Interested in solving problems using limited time/memory

\[T \text{-time TM:} \]
On any input of length \(n \), halts within \(T(n) \) steps.

Polynomial-Time TM:
\[T \text{-time TM where } T \text{ is some polynomial} \]
e.g., \(T(n) = 2n + 100, T(n) = 5n^2 + 1, T(n) = n^{42} + 1 \).

\[S \text{-Space TM:} \]
On any input of length \(n \), uses at most \(S(n) \) tape cells.

Polynomial-Space TM: When \(S \) is a polynomial
P, PSPACE, EXP

Sub-classes of \mathbf{R}, the class of all decidable languages

\mathbf{P} = class of languages decided by *polynomial-time* TMs.

$\mathbf{PSPACE} = $ class of languages decided by *polynomial-space* TMs.

$\mathbf{EXP} = $ class of languages decided by *exponential-time* TMs.

$O(2^{n^c})$
P as feasible computation

The most standard proxy for “feasible” computation

Caveat: n^{50} is not feasible, even for small values of n.

Why not model say, n^4 as feasible?

Will be model dependent:
depends on 1-tape TM vs. k-tape TM, TM vs. RAM,
size of the tape alphabet etc.

Typically, polynomial overheads when simulating one model in another. Hence P is the same class in all such models.

Typically, for interesting problems in P, reasonably efficient algorithms have been developed.
(But this is provably impossible for all of P.)
NP

An important class of languages

Informally: **NP** is the class of languages with an
efficiently verifiable certificate of membership

e.g., $L_{\text{Sudoku}} =$ Set of all generalized $(n^2 \times n^2)$ Sudoku puzzles with a solution

Membership certificate: a solution. Efficiently verifiable

(Linear time to check that all columns, rows and the $n \times n$ cells satisfy the rules in each solution)
NP

Informally: **NP** is the class of languages with an efficiently verifiable *certificate of membership*.

Intuitively, for many problems it is *much* easier to verify a solution than to find one (or to find out that one doesn’t exist).

Major Open Question: *Prove* that this is the case for even one language!

May not have an easy-to-verify certificate of non-membership.
NP

Formally:

\[L \in \textbf{NP} \text{ iff } \exists \ V \in \textbf{P} \text{ and a polynomial } p \text{ s.t. } \]
\[L = \{ x \mid \exists w \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,w) \in V \} \]

Note: We insist \(|w|\) is polynomial in \(|x|\), so that the verification can be done in time polynomial in \(|x|\):

Suppose \(V\) can be decided by a \(p'\) time-bounded TM.
Then time to verify the certificate:

\[p'(|(x,w)|) = O(p'(|x|+|w|)) = O(p'(|x|+p(|x|))) \leq p''(|x|) \]

for some polynomial \(p''\)
NP: Examples

L in **NP**: there is V in **P** s.t.

$L = \{ x | \exists w \text{ (short)} \text{ s.t. } (x,w) \in V \}$

All the languages in **P**

Suppose $L \in \textbf{P}$

Let $V = \{ (x,\varepsilon) | x \in L \}$ so that

$L = \{ x | \exists w \in \{0,1\}^0 \text{ s.t. } (x,w) \in V \}$

where $V \in \textbf{P}$

$\textbf{P} \subseteq \textbf{NP}$
NP: Examples

L in \textbf{NP}: there is V in \textbf{P} s.t.
$L = \{ x \mid \exists \ w \text{ (short) s.t. } (x,w) \in V \}$

Checking if there is a structure

$L_{\text{Hamilton}} = \{ G \mid G \text{ has a Hamiltonian Cycle} \}$

$V_{\text{Hamilton}} = \{ (G,C) \mid C \text{ is a Hamiltonian Cycle in } G \}$

$L_{\text{Clique}} = \{ (G,t) \mid G \text{ has a subgraph isomorphic to } K_t \}$

$V_{\text{Clique}} = \{ (G,t,H) \mid H \text{ is a subgraph of } G \text{ isomorphic to } K_t \}$
NP: Examples

\[L \text{ in } \text{NP} : \text{ there is } V \text{ in } P \text{ s.t. } \]
\[L = \{ x \mid \exists w \text{ (short) s.t. } (x,w) \in V \} \]

Checking if there is a sufficiently good solution to an *optimization problem*

\[L_{\text{TSP}} = \{ (G,t) \mid G \text{ is a graph with a TSP tour of cost } \leq t \} \]
\[V_{\text{TSP}} = \{ (G,t,P) \mid P \text{ is a TSP tour in } G \text{ with cost } \leq t \} \]

Traveling Sales-person Problem
NP: Examples

In an axiomatic system, checking if a mathematical theorem has a proof (with at most t characters)

$L_{Prove} = \{ (\Pi, t) \mid \Pi \text{ is a statement with a proof of size } \leq t \}$

$V_{Prove} = \{ (\Pi, t, P) \mid P \text{ is a proof of } \Pi \text{ with size } \leq t \}$
Breaking a Public-Key Encryption Scheme: Recovering the secret-key from a public-key

\[L_{\text{PKE-Keys}} = \{ (PK,w) \mid PK \text{ is a public-key whose secret-key has } w \text{ as a prefix } \} \]

\[V_{\text{PKE-Keys}} = \{ (PK,w,SK) \mid \text{secret-key } SK \text{ yields public-key } PK \text{ and has prefix } w \} \]
If $P = NP$, then?

Suppose any $L \in NP$ can be decided in time say, quadratic in the time to decide its certificate language V

Can solve large-scale optimization problems (save large amounts of energy, material and other resources)

Prove many outstanding mathematical theorems (if they have proofs short enough for mathematicians to derive manually)

Make Public-Key Cryptography impossible

We believe $P \neq NP$, and that these problems don’t have polynomial-time algorithms!
Complexity of \textbf{NP}

Best known algorithms for many problems in \textbf{NP} take exponential time

How hard can problems in \textbf{NP} be? Do they all have at least exponential time algorithms?

Yes!

To check if \(x \in L\), can try every possible value of \(w\) and check if \((x,w) \in V\)
NP ⊆ PSPACE

For any $L \in \textbf{NP}$, a polynomial-space TM M_L.

Run through every possible value of $w \in \{0,1\}^{p(|x|)}$ and call a polynomial-time subroutine M_V to check if $(x,w) \in V$.

Suppose M_V is a p'-time TM. Total space?

M_V is a p'-space TM too.

M_L is a p''-space TM, where $p''(n) = O(p(n) + p'(n+p(n)))$
\textbf{P} \subseteq \textbf{NP} \subseteq \textbf{PSPACE} \subseteq \textbf{EXP}

Claim: \textbf{PSPACE} \subseteq \textbf{EXP}

For \(L \in \textbf{PSPACE}\), suppose a \(p\)-space TM \(M_L\) with \(d\) states and \(|\Gamma| = k\)

Number of distinct IDs on an input of size \(n\)?

\[d \times p(n) \times k^{p(n)} \leq 2^{p'(n)} \]

If \(M_L\) doesn't halt within that many steps, it must have repeated some ID \(\Rightarrow\) in an infinite loop!

An exponential-time TM for \(L\): Simulate \(M_L\) for \(2^{p'(n)}\) steps. If \(M_L\) has not halted already, halt and reject.
It is known that $P \neq EXP$ (Time-Hierarchy Theorem)

Hence, at least one containment in the chain $P \subseteq NP \subseteq PSPACE \subseteq EXP$ is strict.

All 3 widely believed to be strict
Polynomial-Time Reduction

Suppose f is a reduction from L_1 to L_2

We say f is a \textit{polynomial-time reduction} if f can be computed by a polynomial-time TM

In that case we write $L_1 \leq_{\text{poly}} L_2$

\textbf{Positive Implication}: If $L_1 \leq_{\text{poly}} L_2$ and $L_2 \in \mathbf{P}$ then $L_1 \in \mathbf{P}$

Note: $|f(x)| \leq p(|x|)$ for a polynomial p
NP-Completeness

Consider the language

\[\text{ACCEPT}_{NP} = \{ (z, x, m, 1^t) \mid \exists w \in \{0,1\}^m \text{ s.t.} \]
\[M_z \text{ accepts } (x,w) \text{ within } t \text{ steps } \} \]

\[\text{ACCEPT}_{NP} \in \text{NP} \]

\[\forall \ L \in \text{NP}, \ L \leq_{\text{poly}} \text{ACCEPT}_{NP} \]
NP-Completeness

Claim: $\text{ACCEPT}_{NP} \in \text{NP}$

$$V_{\text{Accept}} = \{ (z, x, m, 1^t, w) \mid w \in \{0,1\}^m \text{ and } M_z \text{ accepts } (x,w) \text{ within } t \text{ steps } \}$$

Claim: $\forall L \in \text{NP}, L \leq_{\text{poly}} \text{ACCEPT}_{NP}$

Let $V \in \text{P}$ and polynomial p be s.t.

$L = \{ x \mid \exists w \in \{0,1\}^{p(|x|)} \text{ s.t. } (x,w) \in V \}$

Polynomial-time reduction: $f(x) = (z, x, m, 1^t)$ where z s.t. M_z is a p'-time TM for V, $m=p(|x|)$, $t=p'(|(x,1^m)|)$
NP-Completeness

Consider the language

\[\text{ACCEPT}_{NP} = \{ (z, x, m, 1^t) \mid \exists w \in \{0,1\}^m \text{ s.t. } \ M_z \text{ accepts } (x,w) \text{ within } t \text{ steps} \} \]

\[\text{ACCEPT}_{NP} \in \text{NP} \]

\[\forall L \in \text{NP}, \ L \leq_{\text{poly}} \text{ACCEPT}_{NP} \]

Implication: \[\text{ACCEPT}_{NP} \in \text{P} \iff \text{NP} = \text{P} \]

\[L \leq_{\text{poly}} L' \text{ and } L' \in \text{P} \]

\[\Rightarrow L \in \text{P} \]
NP-Completeness

A language A is said to be NP-complete if

$$A \in \text{NP}$$

$$\forall L \in \text{NP}, L \leq_{\text{poly}} A$$

Any NP-complete language is one of the hardest NP languages: if it has a $T(n)$-time algorithm, no NP language needs more than $p(n) + T(p(n))$ time for some polynomial p (that depends on the language)

If any NP-complete language is in P, then $P = \text{NP}$
NP-Completeness

\[\text{ACCEPT}_{NP} \text{ is an NP-complete language} \]

Next time: Several natural problems are NP-complete languages

More than 50 years of effort into finding efficient algorithms for many of these problems

Now widely believed that such algorithms do not exist
Non-Deterministic TM

Recall that in a TM the finite control is implemented as (essentially) a DFA

Non-Deterministic TM (NTM): Allow the finite control to be an NFA

\[\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \]

From an ID the TM can move to 0 or more IDs by following each possible transition in the set returned by \(\delta \)
As in the case of NFAs, we say an NTM accepts a string if there exists some execution path starting from the initial ID that accepts (even if some others reject)
A normal (deterministic) TM can simulate an NTM execution by doing a breadth-first search on the above (implicit) graph.
There is a polynomial p s.t., on any input x, every execution thread should finish within $p(|x|)$ steps.
Any path in the execution tree can be specified by the sequence of non-deterministic choices: a k-ary string of length $p(n) (= \text{depth})$, where k is $\max |\delta(q,a)|$.
NP and NTM

\[L \in \text{NP} \iff \exists \text{ a polynomial-time NTM } M \text{ s.t. } L(M) = L \]

\[\Rightarrow : \] Suppose \(L \) has certificate language \(V \in P \).
NTM \(M \) behaves as follows:
- write down a “certificate” \(w \) of the appropriate length, writing 0 or 1 non-deterministically at each step.
- deterministically check if \((x,w) \in V\), and accept if so.

\(M \) accepts \(x \) iff \(\exists \) \(w \) (of the correct length) s.t. \((x,w) \in V\).

\[\Leftarrow : \] Define \(V \) s.t. \((x,w) \in V\) iff when \(M \) is run with start ID for input \(x \), using \(w \) as the string of non-deterministic choices, it accepts.