Deterministic Finite Automata

Lecture 3
CS 374 Tips

This course moves pretty fast

CS 374 expects you to already be completely comfortable with the basics: formal notation, definition and proofs (including induction)

Be prepared to refresh CS 173 material at home!

There will often be more slides posted online than would actually be covered in class (e.g., worked out examples). Do review them.

Review the notes posted online (before and/or after the lecture)
Complexity of Languages

Central Question: How complex an algorithm is needed to compute (aka decide) a language?

Today: a simple class of algorithms, that are fast and can be implemented using minimal hardware

Deterministic Finite Automata (DFA)

DFAs around us: Vending machines, Elevators, Digital watch logic, Calculators, Lexical analyzers (part of program compilation), …
Today

DFA : what are they?

What kind of languages can be decided using them?

How to build DFAs

How to build DFAs from simpler DFAs
DFA (a.k.a. FSM)

Finite: cannot use more memory to work on longer inputs

Finite writable memory (state)

next-state look-up table

output bit for the input so far

next input symbol fed here
DFA (a.k.a. FSM)

Example: check if binary input is a multiple of 3

Next input symbol fed here

Calculate $x' \mod 3$ from $x \mod 3$ and input bit b, where $x' = 2x + b$

Output bit for the input so far

Store $x \mod 3$ here (initial value “null”). Output bit indicates if it is 0.
DFA (a.k.a. FSM)

Example: check if binary input is a multiple of 3

next input symbol fed here

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>null</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

calculate x' mod 3 from x mod 3 and input bit b, where $x' = 2x + b$

output bit indicates if it is 0.

next-state look-up table

<table>
<thead>
<tr>
<th>state $(x \text{ mod } 3)$</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>null</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
DFA (a.k.a. FSM)

Example: check if input (MSB first) is a multiple of 3

<table>
<thead>
<tr>
<th>state $(x \mod 3)$</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>null</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>null</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

How to fully specify a DFA:

Alphabet: Σ

Set of States: Q

Start state: $s \in Q$

Set of Final states: $F \subseteq Q$

Transition Function: $\delta : Q \times \Sigma \rightarrow Q$
Behavior of a DFA on an input

\[M = (\Sigma, Q, \delta, s, F) \]

\[\delta^*(q, \varepsilon) = q \]

\[\delta^*(q, au) = \delta^*(\delta(q, a), u) \]

\(\delta^*(q, w) \) be the state \(M \) reaches on input \(w \in \Sigma^* \),
starting from a state \(q \in Q \)

Formally, \(\delta^*(q, \varepsilon) = q \), and \(\delta^*(q, au) = \delta^*(\delta(q, a), u) \)

We write \(q \xrightarrow{w} p \) to denote \(\delta^*(q, w) = p \)

We write \(q \xrightarrow{a} p \) to denote \(\delta(q, a) = p \)
Behavior of a DFA on an input

\[\delta^*(\text{null}, 01001) = 0 \]

\[\delta^*(0, 01001) = 0 \]

\[\delta^*(\text{null}, \varepsilon) = \text{null} \]

\[\delta^*(0, \varepsilon) = 0 \]

\[\delta^*(\text{null}, 010) = 2 \]

\[\delta^*(2, 01) = 0 \]

\[\delta^*(q, \varepsilon) = q \]

\[\delta^*(q, au) = \delta^*(\delta(q, a), u) \]
Behavior of a DFA on an input

Theorem: \(\delta^*(q,uv) = \delta^*(\delta^*(q,u),v) \)

Proof: By induction on \(|u|\)

Base case: \(|u|=0\). \(\delta^*(q,uv) = \delta^*(q,v) \) and \(\delta^*(\delta^*(q,u),v) = \delta^*(\delta^*(q,\epsilon),v) = \delta^*(q,v) \)

Induction: Let \(n > 0 \).
Assume that the claim holds for all \(u, \ |u| < n \) (and all \(v, q \)).
Consider any \(u, v, q \), s.t. \(|u|=n \). Let \(u=aw \), where \(|w| = n-1 < n \).
\(\delta^*(q,uv) = \delta^*(q,awv) = \delta^*(q',wv) \) where \(q' = \delta(q,a) \) [by def.]
\(= \delta^*(\delta^*(q',w),v) \) [by IH]
But \(\delta^*(q',w) = \delta^*(\delta(q,a),w) = \delta^*(q,aw) \) [by def.]
Hence \(\delta^*(q,uv) = \delta^*(\delta^*(q,u), v) \) [QED]
Input Accepted by a DFA

We say that M **accepts** $w \in \Sigma^*$ if M, on input w, starting from the start state s, reaches a final state

i.e., $\delta^*(s,w) \in F$

$L(M)$ is the set of all strings accepted by M

i.e., $L(M) = \{ w \mid \delta^*(s,w) \in F \}$

Called the language accepted by M
Warning

“\(M \) accepts language \(L \)” does not mean simply that \(M \) accepts each string in \(L \).

“\(M \) accepts language \(L \)” means \(M \) accepts each string in \(L \) and no others!

\[
L(M) = L
\]
Examples: What is $L(M)$?

- Odd #0 and odd #1
- Abbreviation
- Reject state

0^*11^*
Recall Regular Languages

Any regular language has a regular expression and vice versa

<table>
<thead>
<tr>
<th>Atomic expressions (Base cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
</tr>
<tr>
<td>a for $a \in \Sigma$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductively defined expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1+r_2)</td>
</tr>
<tr>
<td>(r_1r_2)</td>
</tr>
<tr>
<td>$(r)^*$</td>
</tr>
</tbody>
</table>

Any regular language is accepted by a DFA and vice versa (to be proven later)
Building DFAs
State = Memory

First, decide on Q

The state of a DFA is its entire memory of what has come before

The state must capture enough information to complete the computation on the suffix to come

When designing a DFA, think “what do I need to know at this moment?” That is your state.
Construction Exercise

$L(M) = \{w \mid w \text{ ends in } 01 \text{ or } 10 \}$

What should be in the memory?

Last two bits seen.
Possible values: $\varepsilon, 0, 1, 00, 01, 10, 11$
Construction Exercise

\[L(M) = \{ w \mid w \text{ ends in 01 or 10 } \} \]

What should be in the memory?

Last two bits seen.
Possible values: \(\varepsilon, (0+00), (1+11), 01, 10 \)
Construction Exercise

$L(M) = \{ w \mid w \text{ contains } 011 \text{ or } 110 \}$

Brute force: Enough to remember last 3 symbols (8+4+2+1=15 states). Stay at accepting states if reached.

“Clever” construction: Enough to remember valid prefixes. States: ε, 0, 1, 01, 11, OK (can forget everything else)

State: longest suffix of input that is a valid prefix of pattern
Building DFAs from DFAs

Complement: M' s.t. $L(M') = \Sigma^* - L(M)$

$F' = Q - F$

Concatenation: M_{12} s.t. $L(M_{12}) = L(M_1) L(M_2)$

Kleene Star: M' s.t. $L(M') = L(M)^*$

Later

Intersection and Union

DFA simulating two DFAs concurrently
Cross Product of DFAs

DFA M_{12} simulating the execution of 2 DFAs M_1 & M_2

$Q_{12} = Q_1 \times Q_2 \quad s_{12} = (s_1, s_2)$

$\delta_{12}((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$

- **Theorem**: $\forall \ w \in \Sigma^* \ , \ \delta^*_{12}(s_{12}, w) = (q_1,q_2) \iff \delta^*_1(s_1,w) = q_1 \ \& \ \delta^*_2(s_2,w) = q_2$
- $F_{12} = ?$ Looks on what we want
Cross Product of DFAs

DFA M_{12} simulating the execution of 2 DFAs M_1 & M_2

$M_b = (\Sigma, Q_b, s_b, F_b, \delta_b)$

• $F_{12} = F_1 \times F_2 \Rightarrow L(M_{12}) = L(M_1) \cap L(M_2)$
• $F_{12} = (F_1 \times Q_2) \cup (Q_1 \times F_2) \Rightarrow L(M_{12}) = L(M_1) \cup L(M_2)$
• $F_{12} = F_1 \times (Q_2 - F_2) \Rightarrow L(M_{12}) = L(M_1) - L(M_2)$
Cross Product of DFAs

$L(M_1) : \text{odd } #0$

$L(M_2) : \text{odd } #1$
Cross Product of DFAs

$L(M_1) : \text{odd }\#0$

$L(M_2) : \text{odd }\#1$

$L(M_{12}) = L(M_1) \cap L(M_2)$
Cross Product of DFAs

$L(M_1) : \text{odd } \#0$

$L(M_2) : \text{odd } \#1$

$L(M_{12}) = L(M_1) \cup L(M_2)$
Summary

DFA : \(M = (\Sigma, Q, \delta, s, F) \), \(L(M) = \{ w \mid \delta^*(s,w) \in F \} \)

\(M \) provides a linear time algorithm to decide \(L(M) \)
\((\textit{later} : L(M) \text{ is a regular language}) \)

How to build DFAs :
Ask what should be in the state

How to build DFAs from simpler DFAs :
Complement, Product Construction.
More later!