We’ve seen various classes of languages that are *closed under complement*: if a language is in the class, then so is its complement. For example, the complement of a regular language is also regular. The complement of a decidable language is also decidable. The complement of a language in \mathbf{P} is also in \mathbf{P} (why?). However, we do not know whether or not \mathbf{NP} is closed under complement. Define coNP to be the set of complements of languages in \mathbf{NP}. In other words, coNP is defined as the class of languages L such that \overline{L} is in \mathbf{NP}. The question of whether \mathbf{NP} is closed under complement, is exactly the question of whether $\mathbf{NP} = \text{coNP}$, which is a question related to the question of whether or not $\mathbf{P} = \mathbf{NP}$. In these problems, we investigate some relationships between \mathbf{NP} and coNP.

1. We saw that \mathbf{NP} is the class of languages of the form $L = \{ x \mid \exists w \in \{0, 1\}^{p(|x|)} \text{ s.t. } (x, w) \in L_0 \}$ for some language L_0 in \mathbf{P} and some polynomial p. Express any language L in coNP in terms of a language $L_1 \in \mathbf{P}$, similar to the above expression for languages in \mathbf{NP}.

2. Suppose $\mathbf{NP} \subseteq \text{coNP}$. Show that then $\mathbf{NP} = \text{coNP}$.

3. Show that if any \mathbf{NP}-complete problem is in coNP, then $\mathbf{NP} = \text{coNP}$.

 Hint: You may use the fact that if $L \in \text{coNP}$ and there is a polynomial time reduction from L' to L, then $L' \in \text{coNP}$. Think about this part at home.