1. It’s almost time to show off your flippin’ sweet dancing skills! Tomorrow is the big dance contest you’ve been training for your entire life, except for that summer you spent with your uncle in Alaska hunting wolverines. You’ve obtained an advance copy of the list of \(n \) songs that the judges will play during the contest, in chronological order.

You know all the songs, all the judges, and your own dancing ability extremely well. For each integer \(k \), you know that if you dance to the \(k \)th song on the schedule, you will be awarded exactly \(\text{Score}[k] \) points, but then you will be physically unable to dance for the next \(\text{Wait}[k] \) songs (that is, you cannot dance to songs \(k + 1 \) through \(k + \text{Wait}[k] \)). The dancer with the highest total score at the end of the night wins the contest, so you want your total score to be as high as possible.

Describe and analyze an efficient algorithm to compute the maximum total score you can achieve. The input to your sweet algorithm is the pair of arrays \(\text{Score}[1..n] \) and \(\text{Wait}[1..n] \).

2. Let \(X = x_1, x_2, \ldots, x_m \) and \(Y = y_1, y_2, \ldots, y_n \) be two sequences. A common supersequence of \(X \) and \(Y \) is another sequence to which \(X \) and \(Y \) are both subsequences. Suppose \(X = a, b, d, c \) and \(Y = b, a, b, e, d \) a trivial common supersequence of \(X \) and \(Y \) is simply the concatenation of \(X \) and \(Y \). A shorter one is \(b, a, b, e, d, c \). Describe an efficient algorithm to compute the length of the shortest common supersequence of \(X \) and \(Y \).

3. To do later.

A shuffle of two strings \(X \) and \(Y \) is formed by interspersing the characters into a new string, keeping the characters of \(X \) and \(Y \) in the same order. For example, the string \(\text{BANANAANANAS} \) is a shuffle of the strings \(\text{BANANA} \) and \(\text{ANANAS} \) in several different ways.

\[
\begin{align*}
\text{BANANAANANAS} & \quad \text{BANANAANANAS} \\
\text{BANANAANANAS} & \quad \text{BANANAANANAS}
\end{align*}
\]

Similarly, the strings \(\text{PRODGYRNAMMMIINC} \) and \(\text{DYPRONGARMMMIC} \) are both shuffles of \(\text{DYNAMIC} \) and \(\text{PROGRAMMING} \):

\[
\begin{align*}
\text{PRODGYRNAMMMIINC} & \quad \text{DYPRONGARMMMIC} \\
\text{PRODGYRNAMMMIINC} & \quad \text{DYPRONGARMMMIC}
\end{align*}
\]

Describe and analyze an efficient algorithm to determine, given three strings \(A[1..m] \), \(B[1..n] \), and \(C[1..m+n] \), whether \(C \) is a shuffle of \(A \) and \(B \).
Basic steps in developing a dynamic programming algorithm

1. **Formulate the problem recursively.** This is the hard part. There are two distinct but equally important things to include in your formulation.

 (a) **Specification.** First, give a clear and precise English description of the problem you are claiming to solve. Don’t describe how to solve the problem at this stage; just describe what the problem actually is. Otherwise, the reader has no way to know what your recursive algorithm is supposed to compute.

 (b) **Solution.** Second, give a clear recursive formula or algorithm for the whole problem in terms of the answers to smaller instances of exactly the same problem. It generally helps to think in terms of a recursive definition of your inputs and outputs. If you discover that you need a solution to a similar problem, or a slightly related problem, you’re attacking the wrong problem; go back to step 1.

2. **Build solutions to your recurrence from the bottom up.** Write an algorithm that starts with the base cases of your recurrence and works its way up to the final solution, by considering intermediate subproblems in the correct order. This stage can be broken down into several smaller, relatively mechanical steps:

 (a) **Identify the subproblems.** What are all the different ways can your recursive algorithm call itself, starting with some initial input? For example, the argument to \textsc{RecFibO} is always an integer between 0 and \(n \).

 (b) **Analyze space and running time.** The number of possible distinct subproblems determines the space complexity of your memoized algorithm. To compute the time complexity, add up the running times of all possible subproblems, ignoring the recursive calls. For example, if we already know \(F_{i-1} \) and \(F_{i-2} \), we can compute \(F_i \) in \(O(1) \) time, so computing the first \(n \) Fibonacci numbers takes \(O(n) \) time.

 (c) **Choose a data structure to memoize intermediate results.** For most problems, each recursive subproblem can be identified by a few integers, so you can use a multidimensional array. For some problems, however, a more complicated data structure is required.

 (d) **Identify dependencies between subproblems.** Except for the base cases, every recursive subproblem depends on other subproblems—which ones? Draw a picture of your data structure, pick a generic element, and draw arrows from each of the other elements it depends on. Then formalize your picture.

 (e) **Find a good evaluation order.** Order the subproblems so that each subproblem comes after the subproblems it depends on. Typically, this means you should consider the base cases first, then the subproblems that depends only on base cases, and so on. More formally, the dependencies you identified in the previous step define a partial order over the subproblems; in this step, you need to find a linear extension of that partial order. \textbf{Be careful!}

 (f) **Write down the algorithm.** You know what order to consider the subproblems, and you know how to solve each subproblem. So do that! If your data structure is an array, this usually means writing a few nested for-loops around your original recurrence.