This lab gives practice at constructing DFAs.

1. Design the following DFAs assuming that the alphabet is \{0, 1\}.

 (a) A DFA for \{w \mid |w| \text{ is odd}\}.

 (b) A DFA for \{w \mid \text{ every prefix } x \text{ of } w \text{ has } |\#_0(x) - \#_1(x)| \leq 2\}. Here, \#_0(y) and \#_1(y) are the number of 0's and 1's respectively in the string y.

 (c) A DFA \(M = (Q, \Sigma, \delta, q_0, F)\) for the intersection of the previous two languages. Specify each element of the tuple precisely. Do not draw any pictures. Label the states reasonably.

2. Design a DFA that accepts all strings over the alphabet \{$,$,¢,0,1,2,3,4,5,6,7,8,9,.$\} that correspond to valid currency amounts. A valid string is either

 • a dollar sign followed by a number which has no leading 0's (unless the number is a single 0 by itself), optionally followed by a decimal point and exactly two decimal digits, OR

 • a one or two-digit number with no leading 0's (unless the number is a single 0 by itself) followed by the cent sign ¢.

 Thus, $432.63, $0, $0.02, $0.00, 47¢, 2¢, 0¢are all accepted, but $021, $4.3, $8.63¢, $0.0, $.02, 02¢, 00¢ are not accepted.

3. To think at home: Here are some more DFA construction exercises.

 (a) i. \((0 + 1)^*\)

 ii. \(\emptyset\)

 iii. \(\{\epsilon\}\)

 (b) Every string except \(000\).

 (c) All strings containing the substring \(000\).

 (d) All strings \textit{not} containing the substring \(000\).

 (e) All strings in which the reverse of the string is the binary representation of a integer divisible by 3.

 (f) All strings \(w\) such that \textit{in every prefix of }\(w\), the number of 0's and 1's differ by at most 2.

4. To think at home: Given two regular expressions \(r\) and \(s\) we write \(r = s\) if \(L(r) = L(s)\). Which of the following are true?

 • \((0 + 1)^* = 0^* + 1^*\)

 • \((01 + 0)^*0 = 0(10 + 0)^*\)

 • \(1(01 + 1)^*0 = 11^*0(11^*0)^* = (1^*0)^*\)