Solution to Problem Set 1

CS373 - Summer 2012
Due: Wednesday June 27th at 9:00 AM
This assignment is worth 100 points.

1. NFA to DFA conversion
[Category: Comprehension, Points: 10]
Convert the following NFAs to DFAs:
(a)

(b)

Solution:

(a)

(b)

2. Epsilon Transitions
[Category: Proof, Points: 20]
Provide a method for removing ε-transitions from an NFA without changing the number of states. That is, given $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$, show that you can always construct another NFA $N^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where $L(N)=L\left(N^{\prime}\right),|Q|=\left|Q^{\prime}\right|$, and δ^{\prime} has no ε-transitions. Prove that your method is correct.
Solution: Let E_{q} be the set of states reachable from q by ε-transitions. We can define this recursively by $q \in E_{q}$ and $\delta\left(q^{\prime}, \varepsilon\right) \in E_{q}$ if $q^{\prime} \in E_{q}$. In other words, this is the "epsilon closure" of state q.
We create the new transition function δ^{\prime} and final states F^{\prime} as follows:
$\delta^{\prime}(q, a)=\left\{\delta\left(q^{\prime}, a\right) \mid q^{\prime} \in E_{q}\right\} \cup \delta(q, a)$
$F^{\prime}=\left\{E_{q} \cap F \neq \emptyset\right\}$
3. Closure properties
[Category: Proof, Points: 45]

Prove that regular languages are closed under the following operations (assume L is regular):
(a) $\triangleleft(L)=\left\{x_{n} x_{n-1} \cdots x_{2} x_{1} \mid x_{i} \in \Sigma, x_{1} x_{2} \cdots x_{n-1} x_{n} \in L\right\}$
(b) $\dagger(L)=\left\{x \mid x y \in L, y \in \Sigma^{*}\right\}$
(c) $\bowtie(L)=\left\{y x \mid x \in \Sigma^{*}, y \in \Sigma^{*}, x y \in L\right\}$

Solution:

(a) Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the NFA that recognizes L, we can construct $N^{\prime}=$ $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ be the NFA that recognizes $\triangleleft(L)$, where:

$$
Q^{\prime}=Q \cup q_{0}^{\prime}
$$

For any $q \in Q^{\prime}$ and any $a \in \Sigma$

$$
\begin{gathered}
\delta^{\prime}(q, a)= \begin{cases}F & \text { if } q=q_{0}^{\prime} \text { and } a=\epsilon \\
\left\{q^{\prime} \mid \delta\left(q^{\prime}, a\right)=q\right\} & \text { if } q \in Q\end{cases} \\
F^{\prime}=q_{0}
\end{gathered}
$$

(b) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the DFA that recognizes L, we can construct $M^{\prime}=$ $\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ be the DFA that recognizes $\dagger(L)$, where:

$$
F^{\prime}=\left\{q \in Q \mid q \text { exists on a path between } q_{0} \text { and } q_{f} \in F\right\}
$$

(c) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the DFA that recognizes L, we can construct $M^{\prime}=$ $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime},\left\{q_{f}\right\}\right)$ be the an NFA that recognizes $\bowtie(L)$, where:
$Q^{\prime}=Q \times Q \cup\left\{q_{0}^{\prime}, q_{f}\right\}$
And we'll define the new transition function as follows:
Jump from the new start state to any state in the original machine. Remember this state:
$\delta^{\prime}\left(q_{0}^{\prime}, \varepsilon\right)=(q, q)$ for $q \in Q$
Take any of the previous transitions, taking care to remember where we started: $\delta^{\prime}\left(\left(q_{a}, q_{b}\right), a\right)=\left(q_{a}, \delta\left(q_{b}, a\right)\right)$ for $q_{b} \in Q$
If we reach an ending state in the previous machine, wrap around:
$\delta^{\prime}\left(\left(q_{a}, q_{b}\right), \varepsilon\right)=\left(q_{a}, q_{0}\right)$ for $q_{b} \in F$
If a transition would take us back to where we started, we should transition to the end state:
$\delta^{\prime}\left(\left(q_{a}, q_{b}\right), a\right)=q_{f}$ if $\delta\left(q_{b}, a\right)=q_{a}$

4. Regular Expressions

[Category: Comprehension, Points: 25]
Write a regular expression for the language:

$$
L=\left\{w \mid w \in\{0,1\}^{*}, w=\langle n\rangle, n \in \mathbb{N}, n \equiv 4 \bmod 5\right\}
$$

In other words, L is the language of binary strings that encode natural numbers that have remainder 4 when divided by 5 . For example, $1001=\langle 9\rangle \in L$, but $110=\langle 6\rangle \notin L$ Ignore leadning zeros (so the strings 00010 and 0010 are both encodings of the same natural number, $\langle 2\rangle$.)

HINT: Generating this regular expression ex nihilo (from nothing) is probably very difficult. Don't forget alternative ways of generating regular expressions.

Solution:

By the description of the problem, we know that the w needs to contain at least one 1 and has at least two 0s at the end of w. Therefore, we can construct a DFA for the language L :

Then we can construct a GNFA of this DFA by the description in the textbook(p.70). Notice that we don't show the ϕ transitions between the states because they do not change the result of conversion.

Then we rip state A and get:

Ripping state D:

Ripping state C:

Ripping state B and the transition between the start state and the final state is the regular expression we need for this problem.

