PROBLEM SET 8
CS 373: THEORY OF COMPUTATION

Assigned: April 4, 2013  Due on: April 11, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow
the homework guidelines given on the class website; submitions not following these guidelines will not be
graded.

Recommended Reading: Lecture 18, 19, and 20.

Problem 1. [Category: Comprehension] Consider the following Turing Machine M with input alphabet
Y = {a,b}. The reject state g is not shown, and if from a state there is no transition on some symbol then
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as per our convention, we assume it goes to the reject state.

1. Give the formal definition of M as a tuple. [5 points]

2. Describe each step of the computation of M on the input baabab as a sequence of instantaneous
descriptions. [3 points]

3. Describe the language recognized by M. Give an informal argument that outlines the intuition behind
the algorithm used by M justifies your answer. [2 points].

Problem 2. [Category: Comprehension+Design+Proof] In this problem, we will show that for any Turing
machine M = (Q,3,T,9, o, Gacc, @rej), there is a Type 0 grammar Gy = (V, X, R, S) such that L(M) =
L(Gpr). Thus, any problem that can be solved on a Turing machine, can be described using Type 0



grammars. The construction of the grammar Gj; will be based on the intuition that the rules of Gj; will
“simulate M backwards”. More precisely, derivations of G; will have the form

S = DUt acclio<d = 01 = DOy =« = >Cp<d = Dgow U 9 = w

where qow - C, F Cp1 F -+ F C1 F u1qaccuz is an accepting computation of M on the input w. > and <
are special symbols used by the grammar Gj; to “enclose” configurations. The variables of Gj; will include
{S,>, <} UQ U (T \ X) and any additional variables that might be needed to describe the following types
of derivations: first generate (any) accepting configuration from S; simulate (backwards) a single step of M;
and produce the string w from the “initial configuration” >gow LI* <1 by erasing the unnecessary symbols.

1. Describe a set of rules that produce derivations of the form S = >c< where C is any accepting
configuration of M. [3 points]

2. Describe a set of rules that simulate M backwards, i.e., have derivations >C;<1 = >Co<, where
configy, Co are configurations of M such that Cs - C;. [4 points]

3. Describe a set of rules that produce derivations of the form >gowll*<t = w, by “erasing” the unnecessary
symbols. [3 points]

Problem 3. [Category: Comprehension+Design+Proof] A 2-PDA is a pushdown automaton that has two
stacks. Thus, like a PDA, it is a nondeterministic machine. In each step, the current control state, the
current input symbol read (which could be e meaning nothing is read from the input), the symbol popped
from the first stack (which could be €, meaning that no symbol is popped), and the symbol popped from
the second stack (which again could be €), determine what the possible next state is, and the symbols to be
pushed onto each of the two stacks (which could be € meaning that no symbol is pushed) are. Additionally,
like a PDA, the 2-PDA accepts an input if it reaches a accepting/final state after reading the entire input,
irrespective of the contents of either of its two stacks.

1. Give the formal definition of a 2-PDA as a tuple, giving the domain and range of the transition function.
[2 points]

2. Give the formal definitions of the instantaneous description of the 2-PDA, computation on a word, and
the language accepted by the machine. [3 points]

3. Prove that if M is a (deterministic, single-tape) Turing machine then there is a 2-PDA P such that
L(P) =L(M). You only need give the construction of the 2-PDA; you do not have to prove that your
construction is correct. [5 points]

Aside: Any recursive program, without dynamic allocation, using only variables that are Boolean valued
(or variables taking values in some finite set) can be modelled using a pushdown automaton: the control
state gives value to each program variable and the program counter (resulting in finitely many states since
all these take values in some finite set), and the stack is used to model the call stack of the program. Thus a
2-threaded program (or multi-threaded program, in general) can be modelled by a 2-PDA (or a k-PDA, for
some value of k), where the different stacks model the call stack of each of the threads. This result suggests
that multi-threaded programs (with only Boolean variables) can compute anything that a general program
with variables of arbitrary type can. This is also to contrast with teh limited computational power of a PDA
with a single stack.



