Problem Set 6
 CS 373: Theory of Computation

Assigned: February 28, 2013 Due on: March 7, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lecture 12, and 13.
Problem 1. [Category: Design+Proof] Design a context-free grammar for the language $L=\left\{a^{i} b^{j} \mid 2 i \leq\right.$ $j \leq 3 i, i, j \in \mathbb{N}\}$. Provide a formal proof that your construction is correct. Hint: Build a grammar for the case when $j=2 i$ and $j=3 i$, and think of a way to fuse the two together.
[10 points]
Problem 2. [Category: Comprehension+Design] Let $G=(V, \Sigma, R,\langle\mathrm{STMT}\rangle)$ be the following grammar

$$
\begin{aligned}
\langle\text { STMT }\rangle & \longrightarrow\langle\text { ASSIGN }\rangle \mid\langle\text { IF-THEN }\rangle \mid\langle\text { IF-THEN-ELSE }\rangle \\
\langle\text { IF-THEN }\rangle & \longrightarrow \text { if condition then }\langle\text { STMT }\rangle \\
\langle\text { IF-THEN-ELSE }\rangle & \longrightarrow \text { if condition then }\langle\text { STMT }\rangle \text { else }\langle\text { STMT }\rangle \\
\langle\text { assign }\rangle & \longrightarrow \mathrm{a}:=1
\end{aligned}
$$

where $\Sigma=\{$ if, then, else, condition, a $:=1\}$ and $V=\{\langle$ STMT \rangle,\langle IF-THEN \rangle,\langle IF-THEN-ELSE \rangle,\langle ASSIGN $\rangle\}$. G is a natural looking grammar for a fragment of a programming language, but G is ambiguous.

1. Show that G is ambiguous.
[5 points]
2. Give a new unambiguous grammar for the same language. You need not prove that your grammar is correct but explain your construction. You may want to look at examples in Lecture 12. [5 points]

Problem 3. [Category: Comprehension] Consider the PDA P over the input alphabet $\{0,1, \#\}$ shown in the figure below; a, in the transitions below, is either 0 or 1 .

1. Write the formal description of the PDA P listing the states, stack alphabet, transition function, initial state and final states.
[5 points]
2. For each of the following strings either show that they are accepted by P by describing an accepting computation, or show that they are not accepted by showing the entire computation tree on the input: 01\#10, 01\#01, 01\#111000.
[3 points]
3. Describe the language recognized by the PDA P. Give an informal justification for your answer, by explaining how the PDA works.
[2 points]
