$\frac{\text{Problem Set 5}}{\text{CS 373: Theory of Computation}}$

Assigned: February 21, 2013 Due on: February 28, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submittions not following these guidelines will not be graded.

Recommended Reading: Lecture 9, 10 and 11.

Problem 1. [Category: Proof] Let $C = \{1^k x \mid x \in \{0,1\}^*, k \ge 1, \text{ and } x \text{ contains at most } k \text{ 1s}\}$. Using the pumping lemma, prove that C is not regular. [10 points]

Problem 2. [Category: Comprehension+Design] Let $L = \mathbf{L}(1^*0(00 \cup 01 \cup 1)(0 \cup 1)^*)$.

- 1. List all the equivalence classes of \equiv_L . Prove that your answer is correct. [5 points]
- 2. Draw the minimum state DFA M^L accepting L. [5 points]

Problem 3. [Category: Comprehension+Proof] For a language $L \subseteq \Sigma^*$, define an equivalence \simeq_L on Σ^* as follows

$$x \simeq_L y$$
 iff $\forall z. \ zx \in L \leftrightarrow zy \in L$

Notice that this is a slightly different equivalence than \equiv_L defined in Lecture 11. Prove that L is regular iff \simeq_L has finitely many equivalence classes. *Hint:* Can you see a connection between \simeq_L and \equiv_{L^R} , where L^R refers to the reverse of L? [10 points]