Problem Set 3 CS 373: Theory of Computation

Assigned: January 31, 2013 Due on: February 7, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 5 and 6.
Problem 1. [Category: Comprehension+Design+Proof] An all-NFA M is a 5 tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ like an NFA, where Q is a finite set of states, Σ is the input alphabet, $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$ is the transition function, $q_{0} \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. The only difference between an all-NFA and an NFA is that M accepts $u \in \Sigma^{*}$ iff every possible state that M could be in after reading u is in F (and at least one state is in F, i.e., all threads cannot die).

1. Taking $q_{1} \xrightarrow{w}_{M} q_{2}$ to be the same as definition 4 in lecture 4 , define formally when an all-NFA M accepts u, and the language recognized by M (definitions similar to definitions 5 and 6 in lecture 4). [2 points]
2. Give a formal definition of a DFA $\mathrm{dfa}(M)$ such that $\mathbf{L}(\mathrm{dfa}(M))=\mathbf{L}(M)$. Prove that your construction is correct.
[$3+5$ points]

Problem 2. [Category: Comprehension+Design]

1. Describe the language of the following regular expressions. A clear, crisp one-level interpretable English description is acceptable, like "This is the set of all binary strings with at least three 0s and at most hundred 1 s ", or like " $\left\{0^{n}(10)^{m} \mid n\right.$ and m are integers $\}$ ". A vague, recursive or multi-level-interpretable description is not, like "This is a set of binary strings that starts and ends in 1, and the rest of the string starts and ends in 0 , and the remainder of the string is a smaller string of the same form!" or "This is a set of strings like $010,00100,0001000$, and so on!". You need not prove the correctness of your answer.
(a) $0^{*}\left(10^{*}\right)^{*}$
[1 points]
(b) $0(10)^{*} 1$
[2 points]
(c) $c^{*}\left(a \cup\left(b c^{*}\right)\right)^{*}$
[2 points]
2. Give regular expressions that accurately describe the following languages. You need not prove the correctness of your answer.
(a) All binary strings with no more than three 0 s .
(b) All binary strings that have two or three occurrences of 1 such that the first and the second occurrence (of 1) are not consecutive.
(c) All binary strings with exactly one occurrence of the substring 000 .
[2 points]

Problem 3. [Category: Proof] Let r and s be regular expressions. Consider the equation $X=r X \cup s$. A regular expression t is a solution to this equation if $t=r t \cup s$ (i.e., $\mathbf{L}(t)=\mathbf{L}(r t \cup s)$).

1. Assuming that $\epsilon \notin \mathbf{L}(r)$, prove that if t is a solution to the above equation then $\mathbf{L}(t)=\mathbf{L}\left(r^{*} s\right)$.
points]
Hint: To show that $\mathbf{L}(t) \subseteq \mathbf{L}\left(r^{*} s\right)$, first show that $\mathbf{L}(t) \subseteq \mathbf{L}\left(r^{n} t \cup r^{n-1} s \cup \ldots \cup s\right)$, for all $n \geq 0$. What can you say about strings $w \in L$ such that $|w|<n$?
2. If $\epsilon \in \mathbf{L}(r)$ then the equation need not have a unique solution. Assuming $\epsilon \in \mathbf{L}(r)$, give a solution for $X=r X \cup s$ that does not depend on r or s.
[3 points]
(Your homework ends at this point. What follows is an application of the result you have proved in this problem for your reading pleasure.)

Application of Problem 3: The above result can be used to obtain another algorithm for converting DFAs to regular expression; lecture 7 describes a different algorithm. Consider the DFA M shown below. Let variable X_{i} denote the language consisting of strings that reach the accept state when starting from the

Figure 1: DFA M
state q_{i}. Now, based on the transitions of M, we write down constraints on the variables X_{i}. For example, X_{0} consists of strings that begin with 0 and then are followed by a string in that is accepted from q_{1} (in other words, belongs to X_{1}) or begin with a 1 and are followed by a string that is accepted from q_{0} (in other words belongs to X_{0}). Thus, we can write the equation

$$
X_{0}=0 X_{1} \cup 1 X_{0}
$$

By observing the transitions out of every other state, we will get the following additional equations.

$$
\begin{aligned}
& X_{1}=0 X_{2} \cup 1 X_{0} \\
& X_{2}=0 X_{2} \cup 1 X_{3} \\
& X_{3}=(0 \cup 1) X_{3} \cup \epsilon
\end{aligned}
$$

Among the above equations, the only thing to note is the equation for the final state $X_{3}:(0 \cup 1) X_{3}$ term on the R.H.S is obtained from the transitions out of q_{3}, and ϵ is added because we know that ϵ belongs the language X_{3} because q_{3} is a final state.

Now if we can find regular expressions for X_{0}, X_{1}, X_{2} and X_{3} that simulatenously satisfy all the above equations, then we would have identified the strings that are accepted from each state. The regular expression equivalent to M would then be the regular expression associated with the variable of the initial state, which in this case is X_{0}.

How do we solve such equation systems? By "Gaussian elimination" and the result in Problem 3 that you have just proved. Let us look at the last equation: it is exactly of the form in Problem 3, if we take
$r=0 \cup 1$ and $s=\epsilon$. Thus, from the result in Problem 3, the solution for X_{3} is the regular expression $(0 \cup 1)^{*} \epsilon=(0 \cup 1)^{*}$. Now we substitute X_{3} in the equation for X_{2} and solve it using the result in Problem 3 to get the expression $0^{*}\left(1(0 \cup 1)^{*}\right)=0^{*} 1(0 \cup 1)^{*}$. Then we substitute the solution for X_{2} in the equation for X_{1}, and we get $X_{1}=0\left(0^{*} 1(0 \cup 1)^{*}\right) \cup 1 X_{0}$ or in other words, $X_{1}=\emptyset X_{1} \cup\left(00^{*} 1(0 \cup 1)^{*} \cup 1 X_{0}\right)$. So taking $r=\emptyset$ and $s=\left(00^{*} 1(0 \cup 1)^{*} \cup 1 X_{0}\right)$, we find that this in the form in Problem 3, and its solution is $\emptyset^{*}\left(00^{*} 1(0 \cup 1)^{*} \cup 1 X_{0}\right)=\left(00^{*} 1(0 \cup 1)^{*} \cup 1 X_{0}\right)$. Note, we have not found a solution for X_{1} yet, because it depends on the solution for X_{0}. But, we can use what we have found to eliminate X_{1} from the equation for X_{0}. Substituting for X_{1} in the equation for X_{0} and rearranging terms (using distributivity laws), we get

$$
\begin{aligned}
X_{0} & =0\left(00^{*} 1(0 \cup 1)^{*} \cup 1 X_{0}\right) \cup 1 X_{0} \\
& =000^{*} 1(0 \cup 1)^{*} \cup 01 X_{0} \cup 1 X_{0} \\
& =(01 \cup 1) X_{0} \cup 000^{*} 1(0 \cup 1)^{*}
\end{aligned}
$$

By a final application of Problem 3, we get the regular expression for X_{0} to be $(01 \cup 1)^{*}\left(000^{*} 1(0 \cup 1)^{*}\right)$. At this point, we could get the solution for X_{1}, but we don't need to because the regular expression for X_{0} is our desired regular expression as q_{0} is the initial state.

In general for an n-state DFA, we would get an equation system that looks like

$$
\begin{aligned}
& X_{1}=\alpha_{11} X_{1} \cup \alpha_{12} X_{2} \cup \cdots \cup \alpha_{1 n} X_{n} \cup c_{1} \\
& X_{2}=\alpha_{21} X_{1} \cup \alpha_{22} X_{2} \cup \cdots \cup \alpha_{2 n} X_{n} \cup c_{2} \\
& \vdots \\
& \quad \vdots \\
& X_{n}=\alpha_{n 1} X_{1} \cup \alpha_{n 2} X_{2} \cup \cdots \cup \alpha_{n n} X_{n} \cup c_{n}
\end{aligned}
$$

Treat the last equation as an equation in only one variable $X_{n}: X_{n}=\alpha_{n n} X_{n} \cup\left(\alpha_{n 1} X_{1} \cup \alpha_{n 2} X_{2} \cup \cdots \cup\right.$ $\left.\alpha_{n n-1} X_{n-1} \cup c_{n}\right)$. Thus, taking $r=\alpha_{n n}$ and $s=\left(\alpha_{n 1} X_{1} \cup \alpha_{n 2} X_{2} \cup \cdots \cup \alpha_{n n-1} X_{n-1} \cup c_{n}\right)$, we can use Problem 3 to obtain a solution for X_{n} in terms of $X_{1}, \ldots X_{n-1}$. We substitute this solution back in all the equations, and we would have eliminated X_{n} from the equation system. We repeat this process until we get an equation for the initial state variable only in terms of the initial state variable, and solve this final equation to get the regular expression!

