$\frac{\text{Problem Set 2}}{\text{CS 373: Theory of Computation}}$

Assigned: January 24, 2013 Due on: January 31, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submittions not following these guidelines will not be graded.

Recommended Reading: Lectures 3 and 4.

Problem 1. [Category: Design+Proof] Let $A_k \subseteq \{a, b\}^*$ be the collection of strings w where there is a position i in w such that the symbol at position i (in w) is a, and the symbol at position i + k is b. For example, consider A_2 (when k = 2). $baab \in A_2$ because the second position (i = 2) has an a and the fourth position has a b. On the other hand, $bb \notin A_2$ (because there are no as) and $aba \notin A_2$ (because none of the as are followed by a b 2 positions away).

- 1. Design a DFA for language A_k . Your formal description (by listing states, transitions, etc. and not "drawing the DFA") will depend on the parameter k but should work no matter what k is; see lecture 2, last page for such an example. [5 points]
- 2. Prove that your DFA is correct when k = 2.

Problem 2. [Category: Comprehension] Consider the following NFA M_0 over the alphabet $\{0, 1\}$.

Figure 1: NFA M_0 for Problem 2

- 1. Describe formally what the following are for automaton M_0 : set of states, initial state, final states, and transition function. [4 points]
- 2. What are $\hat{\delta}_{M_0}(A, 010)$, $\hat{\delta}_{M_0}(A, 101)$, $\hat{\delta}_{M_0}(A, 1101)$, and $\hat{\delta}_{M_0}(B, 10)$? [4 points]
- 3. What is $L(M_0)$? You don't have to prove your answer. [2 points]

Problem 3. [Category: Design+Proof] Consider the language $A_2 \subseteq \{a, b\}^*$, from problem 1, which was defined to be the collection of strings w where there is a position i in w such that the symbol at position i(in w) is a, and the symbol at position i + 2 is b.

[5 points]

- 1. Design an NFA for language A_2 that has at most 4 states. You need not prove that your construction is correct, but the intuition behind your solution should be clear and understandable. [5 points]
- 2. Prove that any DFA recognizing A_2 has at least 5 states.

[5 points]