Problem Set 2

CS 373: Theory of Computation

Assigned: January 24, 2013 Due on: January 31, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lectures 3 and 4.
Problem 1. [Category: Design+Proof] Let $A_{k} \subseteq\{a, b\}^{*}$ be the collection of strings w where there is a position i in w such that the symbol at position i (in w) is a, and the symbol at position $i+k$ is b. For example, consider A_{2} (when $k=2$). baab $\in A_{2}$ because the second position $(i=2)$ has an a and the fourth position has a b. On the other hand, $b b \notin A_{2}$ (because there are no a s) and $a b a \notin A_{2}$ (because none of the a s are followed by a $b 2$ positions away).

1. Design a DFA for language A_{k}. Your formal description (by listing states, transitions, etc. and not "drawing the DFA") will depend on the parameter k but should work no matter what k is; see lecture 2, last page for such an example.
[5 points]
2. Prove that your DFA is correct when $k=2$.
[5 points]

Problem 2. [Category: Comprehension] Consider the following NFA M_{0} over the alphabet $\{0,1\}$.

Figure 1: NFA M_{0} for Problem 2

1. Describe formally what the following are for automaton M_{0} : set of states, initial state, final states, and transition function.
2. What are $\hat{\delta}_{M_{0}}(A, 010), \hat{\delta}_{M_{0}}(A, 101), \hat{\delta}_{M_{0}}(A, 1101)$, and $\hat{\delta}_{M_{0}}(B, 10)$?
3. What is $\mathbf{L}\left(M_{0}\right)$? You don't have to prove your answer.
[2 points]

Problem 3. [Category: Design+Proof] Consider the language $A_{2} \subseteq\{a, b\}^{*}$, from problem 1, which was defined to be the collection of strings w where there is a position i in w such that the symbol at position i (in w) is a, and the symbol at position $i+2$ is b.

1. Design an NFA for language A_{2} that has at most 4 states. You need not prove that your construction is correct, but the intuition behind your solution should be clear and understandable.
2. Prove that any DFA recognizing A_{2} has at least 5 states.
[5 points]
