Problem Set 9 CS 373: Theory of Computation

Assigned: April 18, 2013 Due on: April 25, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lecture 23 and 24.
Problem 1. [Category: Comprehension + Proof] The Post Correspondence Problem (PCP) is the following. Given a set of tiles with two strings, one on the top and the other at the bottom, you want to determine if there is a list of these tiles (repetitions allowed) so that the string obtained by reading the top symbols is the same as the string obtained by reading the bottom symbols. This list is called a "match". For example, consider the set of tiles

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

If we consider the sequence of tiles

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]
$$

the top string is $a \cdot b \cdot c a \cdot a \cdot a b c=a b c a a a b c$ while the bottom string is $a b \cdot c a \cdot a \cdot a b \cdot c=a b c a a a b c$, is the same. However, not all sets of tiles have a match. For example,

$$
\left\{\left[\frac{a b c}{a}\right],\left[\frac{c a}{a}\right],\left[\frac{a c c}{b a}\right]\right\}
$$

does not have a match. More formally, given

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

we need to determine if there is a sequence $i_{1}, i_{2}, \ldots i_{n}$, where every $i_{j} \in\{1,2, \ldots k\}$, such that $t_{i_{1}} t_{i_{2}} \cdots t_{i_{n}}=$ $b_{i_{1}} b_{i_{2}} \cdots b_{i_{n}}$. Thus,

$$
\mathrm{PCP}=\{\langle P\rangle \mid P \text { is a set of tiles that has a match }\}
$$

The PCP problem is known to be undecidable; interested students can read section 5.2 of Sipser's book.
Consider AMBIG $\mathrm{CFG}_{\mathrm{CF}}=\{\langle G\rangle \mid G$ is an ambiguous CFG$\}$. Prove that $\mathrm{AMBIG}_{\mathrm{CFG}}$ is undecidable by reducing PCP to AMBIG ${ }_{\text {CFG }}$. Hint: Given an instance of PCP

$$
P=\left\{\left[\frac{t_{1}}{b_{1}}\right],\left[\frac{t_{2}}{b_{2}}\right], \ldots\left[\frac{t_{k}}{b_{k}}\right]\right\}
$$

construct a CFG G with rules

$$
\begin{aligned}
& S \rightarrow T \mid B \\
& T \rightarrow t_{1} T a_{1}|\cdots| t_{k} T a_{k}\left|t_{1} a_{1}\right| \cdots \mid t_{k} a_{k} \\
& B \rightarrow b_{1} B a_{1}|\cdots| b_{k} B a_{k}\left|b_{1} a_{1}\right| \cdots \mid b_{k} a_{k}
\end{aligned}
$$

where $a_{1}, \ldots a_{k}$ are new terminal symbols. Prove that this reduction is correct.
[10 points]

Problem 2. [Category: Proof] Let $A, B \subseteq\{0,1\}^{*}$ be r.e. languages such that $A \cup B=\{0,1\}^{*}$ and $A \cap B \neq \emptyset$. Prove that $A \leq_{m}(A \cap B)$.

Problem 3. [Category: Proof] Prove that a language A is decidable iff $A \leq_{m} \mathbf{L}\left(0^{*} 1^{*}\right)$.
[10 points]

