1 Closure Properties

Closure Properties

- Recall that we can carry out operations on one or more languages to obtain a new language
- Very useful in studying the properties of one language by relating it to other (better understood) languages
- Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.
- Today: A variety of operations which preserve regularity
 - i.e., the universe of regular languages is *closed* under these operations

Definition 1. Regular Languages are closed under an operation op on languages if

 $L_1, L_2, \ldots L_n$ regular $\implies L = op(L_1, L_2, \ldots L_n)$ is regular

1.1 Boolean Operators

Operations from Regular Expressions

Proposition 2. Regular Languages are closed under \cup , \circ and *.

Proof. (Summarizing previous arguments.)

• L_1, L_2 regular $\implies \exists$ regexes R_1, R_2 s.t. $L_1 = \mathbf{L}(R_1)$ and $L_2 = \mathbf{L}(R_2)$.

 $- \implies L_1 \cup L_2 = \mathbf{L}(R_1 \cup R_2) \implies L_1 \cup L_2$ regular.

- $\implies L_1 \circ L_2 = \mathbf{L}(R_1 \circ R_2) \implies L_1 \circ L_2$ regular.
- $\implies L_1^* = \mathbf{L}(R_1^*) \implies L_1^*$ regular.

Closure Under Complementation

Proposition 3. Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof. • If L is regular, then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that L = L(M).

• Then, $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (i.e., switch accept and non-accept states) accepts \overline{L} .

What happens if M (above) was an NFA? ______ Closure under \cap **Proposition 4.** Regular Languages are closed under intersection, i.e., if L_1 and L_2 are regular then $L_1 \cap L_2$ is also regular.

Proof. Observe that $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$. Since regular languages are closed under union and complementation, we have

- $\overline{L_1}$ and $\overline{L_2}$ are regular
- $\overline{L_1} \cup \overline{L_2}$ is regular
- Hence, $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ is regular.

Is there a direct proof for intersection (yielding a smaller DFA)? _____

Cross-Product Construction

Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be DFAs recognizing L_1 and L_2 , respectively.

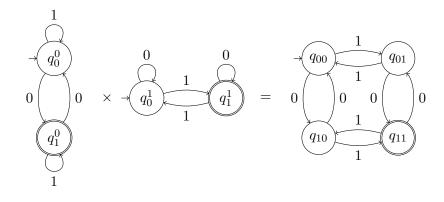
Idea: Run M_1 and M_2 in parallel on the same input and accept if both M_1 and M_2 accept.

Consider $M = (Q, \Sigma, \delta, q_0, F)$ defined as follows

- $Q = Q_1 \times Q_2$
- $q_0 = \langle q_1, q_2 \rangle$
- $\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle$
- $F = F_1 \times F_2$

M accepts $L_1 \cap L_2$ (exercise)

What happens if M_1 and M_2 where NFAs? Still works! Set $\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a)$. An Example



1.2 Homomorphisms

Homomorphism

Definition 5. A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^*$ $(n \ge 2), h(a) = h(a_1)h(a_2) \dots h(a_n).$
- A homomorphism h maps a string $a \in \Sigma^*$ to a string in Δ^* by mapping each character of a to a string $h(a) \in \Delta^*$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^*$, h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example 6. $h: \{0,1\} \to \{a,b\}^*$ where h(0) = ab and h(1) = ba. Then h(0011) = ababbaba

Homomorphism as an Operation on Languages

Definition 7. Given a homomorphism $h : \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example 8. Let $L = \{0^n 1^n | n \ge 0\}$ and h(0) = ab and h(1) = ba. Then $h(L) = \{(ab)^n (ba)^n | n \ge 0\}$

Proposition 9. For any languages L_1 and L_2 , the following hold: $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$; $h(L_1 \circ L_2) = h(L_1) \circ h(L_2)$; and $h(L_1^*) = h(L_1)^*$.

Proof. Left as exercise.

Closure under Homomorphism

Proposition 10. Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof. We will use the representation of regular languages in terms of *regular expressions* to argue this.

- Define homomorphism as an operation on regular expressions
- Show that $\mathbf{L}(h(R)) = h(\mathbf{L}(R))$
- Let R be such that $L = \mathbf{L}(R)$. Let R' = h(R). Then $h(L) = \mathbf{L}(R')$.

Homomorphism as an Operation on Regular Expressions

Definition 11. For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Example 12. If $R = (0 \cup 1)^* 001(0 \cup 1)^*$ and h(0) = ab and h(1) = bc then $h(R) = (ab \cup bc)^* ababbc(ab \cup bc)^*$

Formally h(R) is defined inductively as follows.

$$h(\emptyset) = \emptyset \qquad h(R_1R_2) = h(R_1)h(R_2)$$

$$h(\epsilon) = \epsilon \qquad h(R_1 \cup R_2) = h(R_2) \cup h(R_2)$$

$$h(a) = h(a) \qquad h(R^*) = (h(R))^*$$

Proof of Claim

Claim

For any regular expression R, $\mathbf{L}(h(R)) = h(\mathbf{L}(R))$.

Proof. By induction on the number of operations in R

- Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and $h(\mathbf{L}(R)) = \mathbf{L}(R)$. For R = a, $L(R) = \{a\}$ and $h(\mathbf{L}(R)) = \{h(a)\} = \mathbf{L}(h(a)) = \mathbf{L}(h(R))$. So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(\mathbf{L}(R)) = h(\mathbf{L}(R_1) \cup \mathbf{L}(R_2)) = h(\mathbf{L}(R_1)) \cup h(\mathbf{L}(R_2))$. By induction hypothesis, $h(\mathbf{L}(R_i)) = \mathbf{L}(h(R_i))$ and so $h(\mathbf{L}(R)) = \mathbf{L}(h(R_1) \cup h(R_2))$

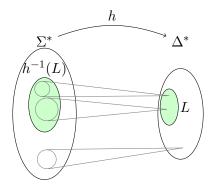
Other cases $(R = R_1 R_2 \text{ and } R = R_1^*)$ similar.

1.3 Inverse Homomorphism

Inverse Homomorphism

Definition 13. Given homomorphism $h: \Sigma^* \to \Delta^*$ and $L \subseteq \Delta^*$, $h^{-1}(L) = \{w \in \Sigma^* \mid h(w) \in L\}$

 $h^{-1}(L)$ consists of strings whose homomorphic images are in L



Inverse Homomorphism

Example 14. Let $\Sigma = \{a, b\}$, and $\Delta = \{0, 1\}$. Let $L = (00 \cup 1)^*$ and h(a) = 01 and h(b) = 10.

- $h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$? $(1001)^* \subsetneq L$

Note: In general $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition 15. Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

- *Proof.* We will use the representation of regular languages in terms of *DFA* to argue this. Given a DFA M recognizing L, construct an DFA M' that accepts $h^{-1}(L)$
 - Intuition: On input w M' will run M on h(w) and accept if M does.

Closure under Inverse Homomorphism

• Intuition: On input w M' will run M on h(w) and accept if M does.

Example 16. $L = L((00 \cup 1)^*)$. h(a) = 01, h(b) = 10.

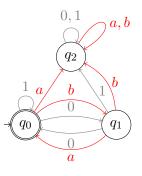


Figure 1: Transitions of automaton M accepting language L is shown in gray. The transitions of automaton accepting $h^{-1}(L)$ are shown in red.

Closure under Inverse Homomorphism

Formal Construction

- Let $M = (Q, \Delta, \delta, q_0, F)$ accept $L \subseteq \Delta^*$ and let $h : \Sigma^* \to \Delta^*$ be a homomorphism
- Define $M' = (Q', \Sigma, \delta', q'_0, F')$, where
 - -Q'=Q
 - $q'_0 = q_0$
 - -F' = F, and
 - $-\delta'(q,a) = q'$ where $\hat{\delta}_M(q,h(a)) = \{q'\}; M'$ on input a simulates M on h(a)
- M' accepts $h^{-1}(L)$ because $\forall w. \ \hat{\delta}_{M'}(q_0, w) = \hat{\delta}_M(q_0, h(w))$ (which you show by induction on w).

2 Applications of Closure Properties

Example I

Definition 17. For a language $L \subseteq \Sigma^*$, define $\operatorname{suffix}(L) = \{v \in \Sigma^* \mid \exists u \in \Sigma^*. uv \in L\}$.

Proposition 18. Regular languages are closed under the suffix(\cdot) operator. That is, if L is regular then suffix(L) is also regular.

Proof. We present two possible proofs of this result.

Direct Construction: Since L is regular, there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes L. We will construct an NFA N such that $\mathbf{L}(N) = \operatorname{suffix}(\mathbf{L}(M)) = \operatorname{suffix}(L)$. Let us first spell out what N needs to do in order to recognize $\operatorname{suffix}(L)$ — on input v, it needs to check if there is some u such that $uv \in L$ or uv is accepted by M. N will do this by simulating M on the input v, but instead of starting from the initial state q_0 , it will first guess a state that M reaches on some string u (such that $uv \in L$), and then simulate M on the input v. Formally, $N = (Q', \Sigma, \delta', q'_0, F')$ where

- $Q' = Q \cup \{q'_0\}$, where $q'_0 \notin Q$
- F' = F
- And δ' is given by

$$\delta'(q,a) = \begin{cases} \delta(q,a) & \text{if } q \in Q\\ \{q \in Q \mid \exists u. \ q_0 \xrightarrow{u}_M q\} & \text{if } q = q'_0 \text{ and } a = \epsilon \end{cases}$$

To complete the proof we need to argue that v is accepted by N iff $v \in \text{suffix}(\mathbf{L}(M))$. Suppose v is accepted by N. Since the only transitions out of the initial state q'_0 are ϵ -transitions, the accepting computation of N on v looks like

$$q'_0 \stackrel{\epsilon}{\longrightarrow}_N q \stackrel{v}{\longrightarrow}_N q'$$

with $q' \in F' = F$, and q being such that there is a u such that $q_0 \xrightarrow{u}_M q$. In other words, we have

$$q_0 \xrightarrow{u}_M q \xrightarrow{v}_M q'$$

and so $uv \in \mathbf{L}(M) = L$. Thus, $v \in \text{suffix}(L)$. Conversely, suppose $v \in \text{suffix}(L)$. Then there is u such that $uv \in L$. Since M recognizes L, M accepts uv using a computation of the form

$$q_0 \xrightarrow{u}_M q \xrightarrow{v}_M q'$$

where q is some state in Q and $q' \in F$. Then from the definition of N, we have a computation

$$q'_0 \xrightarrow{\epsilon}_N q \xrightarrow{v}_N q'$$

and since F' = F, $v \in \mathbf{L}(N)$. This completes the correctness proof of N. Closure Properties: Another proof of the same result uses closure properties.

- For an alphabet Σ , let $\overline{\Sigma} = \{\overline{a} \mid a \in \Sigma\}$.
- Define the homomorphisms unbar: $(\Sigma \cup \overline{\Sigma})^* \to \Sigma^*$ and rembar: $(\Sigma \cup \overline{\Sigma})^* \to \Sigma^*$ as

unbar $(\bar{a}) = a$ for $\bar{a} \in \bar{\Sigma}$ unbar(a) = a for $a \in \Sigma$ rembar $(\bar{a}) = \epsilon$ for $\bar{a} \in \bar{\Sigma}$ rembar(a) = a for $a \in \Sigma$

- Let $L_1 = \text{unbar}^{-1}(L)$; since L is regular and regular languages are closed under inverse homomorphisms, L_1 is regular. L_1 contains strings belonging to L which have some (or none) of the letters annotated with a bar.
- Let $L_2 = L_1 \cap \Sigma^* \Sigma^*$; L_2 is regular because regular languages are closed under intersection. L_2 is the set of strings from L where some of the first few letters have been annotated with a bar.
- Observe that $\operatorname{suffix}(L) = \operatorname{rembar}(L_2)$. Thus $\operatorname{suffix}(L)$ is regular.

Example II

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Consider

 $L = \{w \mid M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w\}$

Is L regular?

Note that M does not necessarily accept all strings in $L; L \subseteq \mathbf{L}(M)$.

By applying a series of regularity preserving operations to $\mathbf{L}(M)$ we will construct L, thus showing that L is regular ______

Computations: Valid and Invalid

- Consider an alphabet Δ consisting of [paq] where $p, q \in Q$, $a \in \Sigma$ and $\delta(p, a) = q$. So symbols of Δ represent transitions of M.
- Let $h: \Delta \to \Sigma^*$ be a homomorphism such that h([paq]) = a
- $L_1 = h^{-1}(\mathbf{L}(M))$; L_1 contains strings of $\mathbf{L}(M)$ where each symbol is associated with a pair of states that represent some transition
 - Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M
- We will first remove all the strings from L_1 that correspond to invalid computations, and then remove those that do not visit every state at least once.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

 $L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \dots \cup [q_0 a_k q_k])\Delta^*)$

 $([q_0a_1q_1], \dots [q_0a_kq_k]$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^* (\sum_{q \neq r} [paq][rbs]) \Delta^*)$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

• The second state of the last symbol must be in F. Holds trivially because L_3 only contains strings accepted by M

Example continued

So far, regular language L_3 = set of strings in Δ^* that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

 $L = h(L_4)$

• Hence, L is regular.

2.1 In a nutshell ...

Proving Regularity using Closure Properties

How can one show that L is a regular language?

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_1, L_2, \ldots L_k$ through regularity preserving operations

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism

(And several other operations...)