
Problem Set 9
Spring 10

Due: Tues 27 April at 2pm in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. CFG design [Category: Comprehension, Points: 20]

Consider this straight line programming language without any support for loops or
conditional statements: A typical straight line program consists of several sentences
separated by semicolon(;). Three di�erent kinds of sentences are supported:

• Variable de�nitions: using keyword var we can de�ne a variable, for example:
var abc
de�nes a variable with name abc. Only letters a . . . z and A . . . Z are allowed in
variable names.

• Assignments: using symbol := we can assign value of some expression to a vari-
able. Left hand side of this symbol is always a variable name and right hand side
is always an expression. An expression is composion of variable names and natu-
ral numbers using arithmetic operations +, -, * and /. A single natural number
or a single variable name is also an expression. Some samples:
abc := -23
a:= 2
v := 12 * v / abc - 4
v := uvy

• Output statements: using keyword print we can print a variable value to the
output. For example:
print abc
prints the value of variable abc to the output.

The language is case sensitive and the only allowed characters are +, -, *, /, ;, :, =,
a . . . z, A . . . Z, 0 . . . 9, (space character), ∼ (new line).

Design a context free grammer for this language (that is, construct a grammer G such
that L(G) is the set of all valid programs in this language. Don't forget to mention all
four important pieces of a CFG explicitly). Note that a program is valid if and only if
it conforms to the previous de�ned rules for this language. Becareful not to add any
rules by your intuition, for example we never required a variable name to be declared
by the keyword var before being used, so for example this is a valid program:
abc :=5; var Acd ;
Acd := abc * 6 * pqr; print fg
Checking those kind of restrictions that are usually needed for serious programming
languages requires more machinery.

1

http://www.cs.uiuc.edu/class/sp10/cs373/

Solution:

Instead of using capital letters for naming non-terminals, we use this kind of notation:
〈abc〉 to give a more readable name to a terminal. In the following grammar, 〈prog〉
is the start symbol. As you are reading the following productions, look back at the
previous page and compare them to the given descriptions of the language.

〈prog〉 → 〈space〉〈prog〉〈space〉; 〈space〉〈prog〉〈space〉 | 〈statement〉 | 〈space〉
〈statement〉 → var〈space〉〈var_name〉
〈var_name〉 → 〈var_name〉〈letter〉 | 〈letter〉
〈statement〉 → 〈var_name〉〈space〉:=〈space〉〈expression〉
〈expression〉 → −〈space〉〈expression〉 | 〈expression〉〈space〉〈op〉〈space〉〈expression〉

〈op〉 → − | + | ∗ | /
〈var_num〉 → 〈var_name〉 | 〈number〉
〈statement〉 → print〈space〉〈var_name〉
〈number〉 → 〈number〉〈digit〉 | 〈digit〉
〈digit〉 → 0 | · · · | 9
〈letter〉 → a | · · · | z | A | · · · | Z
〈space〉 → 〈space〉〈space〉 | |∼

2. CFG decoding [Category: Comprehension, Points: 20]

(a) Consider the grammar G1 with the set of productions shown below (S is the start
variable). What is L(G1)?

S =⇒ # | 0S1 | 1S0

Solution:

L(G1) = {w#(wR)c | w ∈ {0, 1}∗} (xc represents the complement of binary string
x and xR its reverse).

(b) Consider the grammar G2 with the set of productions shown below (S is the start
variable). What is L(G2)?

S =⇒ # | ASA
A =⇒ 0 | 1

2

Solution:

L(G2) = {w#x | w, x ∈ {0, 1}∗, |w| = |x|}.

(c) Consider the grammar G3 with the set of productions shown below (S is the start
variable). What is L(G3)?

S =⇒ 1B1 | 0B0 | ASA
B =⇒ ABA | #
A =⇒ 0 | 1

Solution:

L(G3) = {w#x | w, x ∈ {0, 1}∗, |w| = |x|, x 6= (wR)c}.
(Note: B always generates some string of the form w#x with |w| = |x|. So by
looking at the productions of the non-terminal S, it will generate something of
the form 0w#x0 or 1w#x1 by at least one of the rules S ⇒ 0B0 | 1B1 and �nally
produces some string of the form w′0w#x0x′ or w′1w#x1x′ after (possibly many
times applying) rule S =⇒ ASA. The matching 0 or 1 prohibits the two strings
to be complement of the reverse of each other and that is the only restriction.)

(d) What is the relation between L(G1), L(G2) and L(G3)?

Solution:

L(G2) = L(G1) ∪ L(G3).

3. CYK [Category: Comprehension, Points: 20]

Use CYK algorithm to determine whether or not the given string belongs to the gram-
mar. Your answer should include either "yes" or "no" and a chart that you built using
CYK.

(a) Which of the following words belong to L(G2): aabbb, aabab?

S =⇒ AP | AB
E =⇒ AP | EB | b
P =⇒ EB

A =⇒ a

B =⇒ b

3

Solution:

aabbb - yes, aabab - no.

S,E
∅ S,E,P
∅ S,E E,P
∅ S E,P E,P
A A B,E B,E B,E
a a b b b

∅
∅ ∅
∅ ∅ ∅
∅ S ∅ S
A A B,E A B,E
a a b a b

(b) Which of the following words belong to L(G1): cadba, cbaad?

S =⇒ PE | CQ | a
E =⇒ PE | CQ | a
P =⇒ EB

Q =⇒ ED

B =⇒ b

C =⇒ c

D =⇒ d

Solution:

cadba - yes, cbaad - no.

S,E
P ∅
S,E ∅ ∅
∅ Q ∅ ∅
C S,E D B S,E
c a d b a

∅
∅ ∅
∅ ∅ ∅
∅ ∅ ∅ Q
C B S,E S,E D
c b a a d4

4. Decidability [Category: Proof, Points: 20]

Prove that given a CFG G checking whether or not L(G) ⊆ a∗b∗ is a decidable problem.

Solution:

L(G) ⊆ a∗b∗ ⇐⇒ L(G) ∩ a∗b∗ = ∅
We know that testing whether or not the language of a grammar is empty is a decidable
problem, so we only need to show that given G we can construct L(G)∩a∗b∗ in a �nite
amount of steps.

To construct a grammar for this intersection we can, for example:

• construct a DFA D for a∗b∗,

• construct a DFA D for a∗b∗

• convert G to PDA P , s.t. L(G) = L(P)

• construct PDA P ′ accepting intersection of a∗b∗ and L(G), using P and D

• convert P ′ to a grammar G′

5. CNF Conversion [Category: Proof., Points: 20]

Begin with the grammar G:

S → aAa | bBb | ε
A → C | a
B → C | b
C → CD | ε
D → A | B | ab

(a) Eliminate ε-productions, obtaining G1. (8 Points)

(b) Eliminate any unit productions in G1, obtaining G2. (6 Points)

(c) Put G2 into Chomsky Normal Form G3. (6 Points)

Solution:

(a) First of all, add a new start variable S0 with S0 → S. The set of nullable vari-
ables are {S0, S, A,B,C,D}. Adding productions that replace each appearance
of nullable variables by ε obtains G1:
S0 → S | ε
S → aAa | bBb | aa | bb
A → C | a
B → C | b
C → CD | D
D → A | B | ab

5

(b) The unit rules in G1 are: S0 → S,A → C,B → C,C → D,D → A,D → B.
After elimination we get G2:

S0 → aAa | bBb | aa | bb | ε
S → aAa | bBb | aa | bb
A → b | CD | ab | a
B → a | CD | ab | b
C → CD | a | b | ab
D → a | b | CD | ab

(c) We introduce two new rules P → a,Q → b to eliminate mixing rules. Then we
also introduce X → AP, Y → BQ to eliminate long rules:

S0 → PX | QY | PP | QQ | ε
S → PX | QY | PP | QQ
A → b | CD | PQ | a
B → a | CD | PQ | b
C → CD | a | b | PQ
D → a | b | CD | PQ
X → AP
Y → BQ
P → a
Q → b

6. Closure Property [Category: Proof., Points: 20]

Prove the language Ls = {anbncm | m = n − 1 or m = n + 1} is not context-free
using only closure properties. (You may assume that L = {anbncn | n ≥ 0} is not
context-free.)

Solution:

Assume for the sake of contradiction that Ls is context-free, then by closure under
concatenation, L′s = Ls ◦ {c} = {anbncm | m = n or m = n+2,m ≥ 1} is also context-
free. Note that L3 = {aibjck | (i+ j + k) is divided by 3} is a regular language. Since
the intersection of a context-free language and a regular language is context-free, we
have (L′s ∩ L3) ∪ {ε} = L is also context-free. Contradiction!

6

	Homework 1 (Spring 10): Problem Set 9

