Problem Set 9

Spring 10

Due: Tues 27 April at 2 pm in class before the lecture.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.uiuc.edu/class/sp10/cs373/

1. CFG design [Category: Comprehension, Points: 20]

Consider this straight line programming language without any support for loops or conditional statements: A typical straight line program consists of several sentences separated by semicolon(;). Three different kinds of sentences are supported:

- Variable definitions: using keyword var we can define a variable, for example: var abc
defines a variable with name abc. Only letters $a \ldots z$ and $A \ldots Z$ are allowed in variable names.
- Assignments: using symbol $:=$ we can assign value of some expression to a variable. Left hand side of this symbol is always a variable name and right hand side is always an expression. An expression is composion of variable names and natural numbers using arithmetic operations,,$+-^{*}$ and /. A single natural number or a single variable name is also an expression. Some samples:
$a b c:=-23$
$\mathrm{a}:=2$
$\mathrm{v}:=12$ * $\mathrm{v} / \mathrm{abc}-4$
v := uvy
- Output statements: using keyword print we can print a variable value to the output. For example:
print abc
prints the value of variable $a b c$ to the output.
The language is case sensitive and the only allowed characters are $+,-,{ }^{*}, /, ;,:,=$, $a \ldots z, A \ldots Z, 0 \ldots 9, \smile$ (space character),\sim (new line).
Design a context free grammer for this language (that is, construct a grammer G such that $L(G)$ is the set of all valid programs in this language. Don't forget to mention all four important pieces of a CFG explicitly). Note that a program is valid if and only if it conforms to the previous defined rules for this language. Becareful not to add any rules by your intuition, for example we never required a variable name to be declared by the keyword var before being used, so for example this is a valid program:
abc :=5; var Acd ;
Acd $:=a b c{ }^{*} 6$ * pqr; print fg
Checking those kind of restrictions that are usually needed for serious programming languages requires more machinery.

Solution:

Instead of using capital letters for naming non-terminals, we use this kind of notation: $\langle a b c\rangle$ to give a more readable name to a terminal. In the following grammar, $\langle p r o g\rangle$ is the start symbol. As you are reading the following productions, look back at the previous page and compare them to the given descriptions of the language.

```
    \(\langle p r o g\rangle \rightarrow\langle\) space \(\rangle\langle\) prog \(\rangle\langle\) space \(\rangle ;\langle\) space \(\rangle\langle p r o g\rangle\langle\) space \(\rangle \mid\langle\) statement \(\rangle \mid\langle\) space \(\rangle\)
\(\langle\) statement \(\rangle \rightarrow \operatorname{var}\langle\) space \(\rangle\left\langle v a r \_n a m e\right\rangle\)
\(\left\langle v a r \_n a m e\right\rangle \rightarrow\left\langle v a r \_n a m e\right\rangle\langle l e t t e r\rangle \mid\langle l e t t e r\rangle\)
\(\langle\) statement \(\rangle \rightarrow\left\langle v a r \_n a m e\right\rangle\langle\) space \(\rangle:=\langle\) space \(\rangle\langle\) expression \(\rangle\)
\(\langle\) expression \(\rangle \rightarrow-\langle\) space \(\rangle\langle\) expression \(\rangle \mid\langle\) expression \(\rangle\langle\) space \(\rangle\langle o p\rangle\langle\) space \(\rangle\langle\) expression \(\rangle\)
        \(\langle o p\rangle \rightarrow-|+|*| /\)
\(\left\langle v a r \_n u m\right\rangle \rightarrow\left\langle v a r \_n a m e\right\rangle \mid\langle n u m b e r\rangle\)
\(\langle\) statement \(\rangle \rightarrow \operatorname{print}\langle\) space \(\rangle\left\langle v a r \_n a m e\right\rangle\)
    \(\langle\) number \(\rangle \rightarrow\langle\) number \(\rangle\langle\) digit \(\rangle \mid\langle\) digit \(\rangle\)
        \(\langle\) digit \(\rangle \rightarrow 0|\cdots| 9\)
        \(\langle\) letter \(\rangle \rightarrow \mathrm{a}|\cdots| \mathrm{z}|\mathrm{A}| \cdots \mid \mathrm{Z}\)
        \(\langle\) space \(\rangle \rightarrow\langle\) space \(\rangle\langle\) space \(\rangle|\smile| \sim\)
```

2. CFG decoding [Category: Comprehension, Points: 20]
(a) Consider the grammar G_{1} with the set of productions shown below (S is the start variable). What is $L\left(G_{1}\right)$?

$$
S \Longrightarrow \#|0 S 1| 1 S 0
$$

Solution:

$L\left(G_{1}\right)=\left\{w \#\left(w^{R}\right)^{c} \mid w \in\{0,1\}^{*}\right\}$ (x^{c} represents the complement of binary string x and x^{R} its reverse).
(b) Consider the grammar G_{2} with the set of productions shown below (S is the start variable). What is $L\left(G_{2}\right)$?

$$
\begin{aligned}
& S \Longrightarrow \# \mid A S A \\
& A \Longrightarrow 0 \mid 1
\end{aligned}
$$

Solution:

$L\left(G_{2}\right)=\left\{w \# x\left|w, x \in\{0,1\}^{*},|w|=|x|\right\}\right.$.
(c) Consider the grammar G_{3} with the set of productions shown below (S is the start variable). What is $L\left(G_{3}\right)$?

$$
\begin{aligned}
& S \Longrightarrow 1 B 1|0 B 0| A S A \\
& B \Longrightarrow A B A \mid \# \\
& A \Longrightarrow 0 \mid 1
\end{aligned}
$$

Solution:

$L\left(G_{3}\right)=\left\{w \# x\left|w, x \in\{0,1\}^{*},|w|=|x|, x \neq\left(w^{R}\right)^{c}\right\}\right.$.
(Note: B always generates some string of the form $w \# x$ with $|w|=|x|$. So by looking at the productions of the non-terminal S, it will generate something of the form $0 w \# x 0$ or $1 w \# x 1$ by at least one of the rules $S \Rightarrow 0 B 0 \mid 1 B 1$ and finally produces some string of the form $w^{\prime} 0 w \# x 0 x^{\prime}$ or $w^{\prime} 1 w \# x 1 x^{\prime}$ after (possibly many times applying) rule $S \Longrightarrow A S A$. The matching 0 or 1 prohibits the two strings to be complement of the reverse of each other and that is the only restriction.)
(d) What is the relation between $L\left(G_{1}\right), L\left(G_{2}\right)$ and $L\left(G_{3}\right)$?

Solution:

$L\left(G_{2}\right)=L\left(G_{1}\right) \cup L\left(G_{3}\right)$.
3. CYK [Category: Comprehension, Points: 20]

Use CYK algorithm to determine whether or not the given string belongs to the grammar. Your answer should include either "yes" or "no" and a chart that you built using CYK.
(a) Which of the following words belong to $L\left(G_{2}\right)$: aabbb, aabab?

$$
\begin{aligned}
& S \Longrightarrow A P \mid A B \\
& E \Longrightarrow A P|E B| b \\
& P \Longrightarrow E B \\
& A \Longrightarrow a \\
& B \Longrightarrow b
\end{aligned}
$$

Solution:

$a a b b b$ - yes, $a a b a b$ - no.

S,E				
\emptyset	S,E,P			
\emptyset	S, E	E,P		
\emptyset	S	E,P	E,P	
A	A	B,E	B,E	B,E
a	a	b	b	b

\emptyset				
\emptyset	\emptyset			
\emptyset	\emptyset	\emptyset		
\emptyset	S	\emptyset	S	
A	A	B,E	A	B,E
a	a	b	a	b

(b) Which of the following words belong to $L\left(G_{1}\right)$: cadba, cbaad?

$$
\begin{aligned}
& S \Longrightarrow P E|C Q| a \\
& E \Longrightarrow P E|C Q| a \\
& P \Longrightarrow E B \\
& Q \Longrightarrow E D \\
& B \Longrightarrow b \\
& C \Longrightarrow c \\
& D \Longrightarrow d
\end{aligned}
$$

Solution:

$c a d b a$ - yes, $c b a a d$ - no.

S,E				
P	\emptyset			
S,E	\emptyset	\emptyset		
\emptyset	Q	\emptyset	\emptyset	
C	S,E	D	B	S,E
c	a	d	b	a

\emptyset				
\emptyset	\emptyset			
\emptyset	\emptyset	\emptyset		
\emptyset	\emptyset	\emptyset	Q	
C	B	S,E	S,E	D
c	b_{4}	a	a	d

4. Decidability [Category: Proof, Points: 20]

Prove that given a CFG G checking whether or not $L(G) \subseteq a^{*} b^{*}$ is a decidable problem.

Solution:

$L(G) \subseteq a^{*} b^{*} \Longleftrightarrow L(G) \cap \overline{a^{*} b^{*}}=\emptyset$
We know that testing whether or not the language of a grammar is empty is a decidable problem, so we only need to show that given G we can construct $L(G) \cap \overline{a^{*} b^{*}}$ in a finite amount of steps.

To construct a grammar for this intersection we can, for example:

- construct a DFA D for $a^{*} b^{*}$,
- construct a DFA \bar{D} for $\overline{a^{*} b^{*}}$
- convert G to PDA P, s.t. $L(G)=L(P)$
- construct PDA P^{\prime} accepting intersection of $a^{*} b^{*}$ and $L(G)$, using P and \bar{D}
- convert P^{\prime} to a grammar G^{\prime}

5. CNF Conversion [Category: Proof., Points: 20]

Begin with the grammar G :

$$
\begin{aligned}
& S \rightarrow a A a|b B b| \epsilon \\
& A \rightarrow C \mid a \\
& B \rightarrow C \mid b \\
& C \rightarrow C D \mid \epsilon \\
& D \rightarrow A|B| a b
\end{aligned}
$$

(a) Eliminate ϵ-productions, obtaining G_{1}. (8 Points)
(b) Eliminate any unit productions in G_{1}, obtaining G_{2}. (6 Points)
(c) Put G_{2} into Chomsky Normal Form G_{3}. (6 Points)

Solution:

(a) First of all, add a new start variable S_{0} with $S_{0} \rightarrow S$. The set of nullable variables are $\left\{S_{0}, S, A, B, C, D\right\}$. Adding productions that replace each appearance of nullable variables by ϵ obtains G_{1} :

$$
\begin{aligned}
S_{0} & \rightarrow S \mid \epsilon \\
S & \rightarrow a A a|b B b| a a \mid b b \\
A & \rightarrow C \mid a \\
B & \rightarrow C \mid b \\
C & \rightarrow C D \mid D \\
D & \rightarrow A|B| a b
\end{aligned}
$$

(b) The unit rules in G_{1} are: $S_{0} \rightarrow S, A \rightarrow C, B \rightarrow C, C \rightarrow D, D \rightarrow A, D \rightarrow B$. After elimination we get G_{2} :

$$
\begin{aligned}
S_{0} & \rightarrow a A a|b B b| a a|b b| \epsilon \\
S & \rightarrow a A a|b B b| a a \mid b b \\
A & \rightarrow b|C D| a b \mid a \\
B & \rightarrow a|C D| a b \mid b \\
C & \rightarrow C D|a| b \mid a b \\
D & \rightarrow a|b| C D \mid a b
\end{aligned}
$$

(c) We introduce two new rules $P \rightarrow a, Q \rightarrow b$ to eliminate mixing rules. Then we also introduce $X \rightarrow A P, Y \rightarrow B Q$ to eliminate long rules:

$$
\begin{aligned}
S_{0} & \rightarrow P X|Q Y| P P|Q Q| \epsilon \\
S & \rightarrow P X|Q Y| P P \mid Q Q \\
A & \rightarrow b|C D| P Q \mid a \\
B & \rightarrow a|C D| P Q \mid b \\
C & \rightarrow C D|a| b \mid P Q \\
D & \rightarrow a|b| C D \mid P Q \\
X & \rightarrow A P \\
Y & \rightarrow B Q \\
P & \rightarrow a \\
Q & \rightarrow b
\end{aligned}
$$

6. Closure Property [Category: Proof., Points: 20]

Prove the language $L_{s}=\left\{a^{n} b^{n} c^{m} \mid m=n-1\right.$ or $\left.m=n+1\right\}$ is not context-free using only closure properties. (You may assume that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.)

Solution:

Assume for the sake of contradiction that L_{s} is context-free, then by closure under concatenation, $L_{s}^{\prime}=L_{s} \circ\{c\}=\left\{a^{n} b^{n} c^{m} \mid m=n\right.$ or $\left.m=n+2, m \geq 1\right\}$ is also contextfree. Note that $L_{3}=\left\{a^{i} b^{j} c^{k} \mid(i+j+k)\right.$ is divided by 3$\}$ is a regular language. Since the intersection of a context-free language and a regular language is context-free, we have $\left(L_{s}^{\prime} \cap L_{3}\right) \cup\{\epsilon\}=L$ is also context-free. Contradiction!

