
Problem Set 9
Spring 10

Due: Tues 27 April at 2pm in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. CFG design [Category: Comprehension, Points: 20]

Consider this straight line programming language without any support for loops or
conditional statements: A typical straight line program consists of several sentences
separated by semicolon(;). Three di�erent kinds of sentences are supported:

• Variable de�nitions: using keyword var we can de�ne a variable, for example:
var abc
de�nes a variable with name abc. Only letters a . . . z and A . . . Z are allowed in
variable names.

• Assignments: using symbol := we can assign value of some expression to a vari-
able. Left hand side of this symbol is always a variable name and right hand side
is always an expression. An expression is composion of variable names and natu-
ral numbers using arithmetic operations +, -, * and /. A single natural number
or a single variable name is also an expression. Some samples:
abc := -23
a:= 2
v := 12 * v / abc - 4
v := uvy

• Output statements: using keyword print we can print a variable value to the
output. For example:
print abc
prints the value of variable abc to the output.

The language is case sensitive and the only allowed characters are +, -, *, /, ;, :, =,
a . . . z, A . . . Z, 0 . . . 9, (space character), ∼ (new line).

Design a context free grammer for this language (that is, construct a grammer G such
that L(G) is the set of all valid programs in this language. Don't forget to mention all
four important pieces of a CFG explicitly). Note that a program is valid if and only if
it conforms to the previous de�ned rules for this language. Becareful not to add any
rules by your intuition, for example we never required a variable name to be declared
by the keyword var before being used, so for example this is a valid program:
abc :=5; var Acd ;
Acd := abc * 6 * pqr; print fg
Checking those kind of restrictions that are usually needed for serious programming
languages requires more machinery.

2. CFG decoding [Category: Comprehension, Points: 20]

1

http://www.cs.uiuc.edu/class/sp10/cs373/

(a) Consider the grammar G1 with the set of productions shown below (S is the start
variable). What is L(G1)?

S =⇒ # | 0S1 | 1S0

(b) Consider the grammar G2 with the set of productions shown below (S is the start
variable). What is L(G2)?

S =⇒ # | ASA
A =⇒ 0 | 1

(c) Consider the grammar G3 with the set of productions shown below (S is the start
variable). What is L(G3)?

S =⇒ 1B1 | 0B0 | ASA
B =⇒ ABA | #
A =⇒ 0 | 1

(d) What is the relation between L(G1), L(G2) and L(G3)?

3. CYK [Category: Comprehension, Points: 20]

Use CYK algorithm to determine whether or not the given string belongs to the gram-
mar. Your answer should include either "yes" or "no" and a chart that you built using
CYK.

(a) Which of the following words belong to L(G2): aabbb, aabab?

S =⇒ AP | AB
E =⇒ AP | EB | b
P =⇒ EB

A =⇒ a

B =⇒ b

(b) Which of the following words belong to L(G1): cadba, cbaad?

S =⇒ PE | CQ | a
E =⇒ PE | CQ | a
P =⇒ EB

Q =⇒ ED

B =⇒ b

C =⇒ c

D =⇒ d

2

4. Decidability [Category: Proof, Points: 20]

Prove that given a CFG G checking whether or not L(G) ⊆ a∗b∗ is a decidable problem.

5. CNF Conversion [Category: Proof., Points: 20]

Begin with the grammar G:

S → aAa | bBb | ε
A → C | a
B → C | b
C → CD | ε
D → A | B | ab

(a) Eliminate ε-productions, obtaining G1. (8 Points)

(b) Eliminate any unit productions in G1, obtaining G2. (6 Points)

(c) Put G2 into Chomsky Normal Form G3. (6 Points)

6. Closure Property [Category: Proof., Points: 20]

Prove the language Ls = {anbncm | m = n − 1 or m = n + 1} is not context-free
using only closure properties. (You may assume that L = {anbncn | n ≥ 0} is not
context-free.)

3

