
Problem Set 8
Spring 10

Due: Tuesday, April 20, in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. E.T. [Category: Puzzle, Points: 5]

Show that the problem of deciding whether aliens exist in the universe is decidable.
More precisely, show that there is a Turing machine that will print �YES� if there are
aliens in the universe, and �NO� otherwise!

Solution:

A problem is decidable if there exists a Turing machine that decides it. However, we
don't need to be abe to construct one machine. We simply have to prove the existence
of a machine that decides it.

Pick a TM M1 that always prints �YES� and halts, and pick another TM M2 that
always prints �NO� and halts. We have two cases: If aliens exist then TM M1 does
the job, if aliens don't exist then TM M2 does the job. So in both cases there is a TM
that does the job and this problem is hence decidable (of course we don't know which
of these two TMs actually decides it, but we know that such a TM exists!).

In general, for any one question, or any �nite number of questions, there is always a
decider. Decidability makes sense only when the language is in�nite. So, the set of all
theorems mankind has proven is, trivially, decidable.

This does not mean that we are over-trivializing unknown problems. It just means that
the theory of computation considers any �nite language trivial. The theory of com-
putation is more about the structure of in�nite sets (languages) that can be de�ned
using �nite means (like a machine). What these sets mean is not, technically speaking,
part of the study. This is often a source of great confusion in people who don't under-
stand this di�erence, but use Turing's undecidability arguments in their philosophical
arguments (very similar to how quantum theory is misinterpreted in many arguments).

2. Reduction à la Rice's Theorem [Category: Proof, Points: 20]

A language L ⊆ Σ∗ is closed under reversal if for every w ∈ L, wR ∈ L.
Show that Lrev = {〈M〉 |M is a TM and L(M) is closed under reversal} is undecid-
able.

You may not simply appeal to Rice's theorem (however, you can adapt the proof of
Rice's theorem to solve this problem).

1

http://www.cs.uiuc.edu/class/sp10/cs373/

Solution:

First note that if |Σ| = 1, then L is decidable (because every string in Σ∗ will be the
reverse of itself and so every language will be the reverse of itself). So assume a, b ∈ Σ
and a 6= b.

We prove that Lrev is not decidable which is enough to show that Lrev is not decidable.
We have

Lrev = {〈M〉 | 〈M〉 is not a TM code or, it is a TM and L(M) is not closed under reversal}

Consider a TM M ′ built this way:

Algorithm M ′(x)
1. v←Simulate M (w)
2. if v = Yes and x = �ab�
3. then return Yes
4. else return No

You can see that we have these two properties:

〈M,w〉 ∈ ATM =⇒ M(w) = Y es =⇒ L(M ′) = {ab} =⇒ 〈M ′〉 ∈ Lrev

〈M,w〉 /∈ ATM =⇒ M(w) 6= Y es =⇒ L(M ′) = ∅ =⇒ 〈M ′〉 /∈ Lrev

Note that when M(w) 6= Y es we have two cases as usual, M(w) may halt and return
No (explicit reject) or it may never halt (implicit reject). In both cases M ′ will never
accept (inspect the code of M ′ in the previous page).

So to �gure out whether 〈M,w〉 is a member of ATM we can just build 〈M ′〉 and check
whether it is a member of Lrev (so we have reduced ATM to Lrev). Here is the code of
a decider for Lrev using this idea:

Algorithm DATM
(〈M,w〉)

1. 〈M ′〉←Write down the code of M ′ using 〈M,w〉
2. return DLrev

(〈M ′〉)

3. Queueueueueueue [Category: Proof, Points: 20]

A queue automaton is an automaton with �nitely many states, that can manipulate an
(unbounded) queue data-structure. Fix an input alphabet Σ and a queue alphabet Γ,
where Σ ⊆ Γ. The input, a word in Σ∗, is given to the queue automaton in the queue,
and in each step the automaton can enqueue a letter onto the queue, or dequeue a
letter from the queue. A queue is simply a FIFO (�rst-in-�rst-out) data-structure, and
can contain any number of letters. The queue automaton is non-deterministic, and
accepts a word if there is some way to reach an accept state.

2

Show that the membership problem for queue automata in undecidable.

In other words, show that, given a queue automaton QA and a word w ∈ Σ∗, checking
whether QA accepts w is undecidable.

Your answer can be at a high-level description of a reduction.

Below is a formal description of a queue automaton in case you want to understand
the question better using a more precise description (you need not give the reduction
in this kind of detail).

Let Γε = Γ ∪ {eps}.
A queue automaton is a tuple (Q,Σ,Γ, δ, q0, qacc) where Q is a �nite set of states, q0 ∈ Q
is the initial state, qacc ∈ Q is the accepting state, and δ ⊆ Q× Γε × Γε ×Q.
Intuitively, if (q, a, b, q′) ∈ δ, then it means that the automaton can go from state q to
state q′ by dequeuing a from the queue and enqueing b to the queue.

Formally, a con�guration of a queue automaton is a pair (q, x) where q ∈ Q and x ∈ Γ∗

(q is the state the queue automaton is in, and x is the content of the queue, with the
head of the queue being the �rst letter in x and the tail of the queue being the last
letter in x).

We de�ne the transitions between con�gurations as follows: for any x ∈ Γ∗, a, b ∈ Γ,
(q, ax) → (q′, xb) i� (q, a, b, q′) ∈ δ. (This captures a move that dequeues a and
enqueues b.)

A word w is accepted by the queue automaton if there is a sequence of con�gurations
C1, C2, . . . , Cn such that C1 = (q0, w), for each 1≤ i<n, Ci → Ci+1, and Cn = (qacc, y)
for some y ∈ Γ∗.

Solution:

First we show that for any TM M we can build a QA MQ such that L(MQ) = L(M).
The idea is that MQ remembers all explored parts of TM tape inside its queue, in the
same order as the symbols appear on the tape. It introduces a primed version of each
tape symbol (for example a′ for a). At each moment exactly one of the symbols in the
queue is of the primed type: the symbol that the head of TM is pointing to. Therefore
MQ also remembers the position of the tape head inside its queue.

MQ introduces another new tape symbol: ∼. This symbol is being used for rotating

queue. Rotating queue is an operation that allows MQ to scan all the information that
it has stored in its queue (and potentially change them if it wants to). To perform
a rotation MQ enqueues ∼ and then repeatedly dequeues a symbol from its queue
and stores it in a temporary bu�er (This bu�er contains just one symbol and is being
simulated usingMQ's internal states). Then it dequeues some other symbol a, enqueues
the bu�er into the queue and overwrite the bu�er with a. These operation are repeated
till it dequeues the symbol ∼: it throws away the symbol ∼ and just dequeues the
bu�er.

3

Now to simulate a transition in M like δ(q, a) = (p, b, R), MQ starts a rotation. Once
it dequeues symbol a′ it knows that it corresponds to the symbol that the head points
to (so it should be converted to a b). Now MQ looks at its bu�er (assume it contains
symbol c) and it knows that the head should now point to this cell, therefore it enqueues
c′ (instead of c). Then it writes b to the bu�er (instead of a) and it continues the rest
of the rotation. Other kinds of transitions are handled in a similar way (and at the
very beginning we need a similar rotation that puts a prime on the very �rst symbol
of the queue - because that is the place the head points to initially). This proves that
we can simulate a TM using a QA.

Now this is the language that we are asked to show undecidable:

AQA = {〈Q,w〉 | Q is a QA and Q accepts w}

We reduce ATM to this set to prove it is undecidable: starting with 〈M,w〉 build the
code forMQ as described above. Since L(M) = L(MQ),M accepts w i�MQ accepts w,
therefore we can just ask whether MQ accepts w. But this we can solve using decider
of AQA:

Algorithm DATM
(〈M,w〉)

1. 〈MQ〉←Write code for MQ as described using 〈M,w〉
2. return DAQA

(〈MQ, w〉)

4. Nondeterminism [Category: Construction, Points: 20]

For every natural number n, let nb be the binary representation of n. For example,
5b = 101. Assume there is a TM, Multiplier, that when given inputs mb and nb on two
tapes, outputs (m ∗ n)b on the third tape. The TM Multiplier is provided for you as a
black box that you can use.

Construct a nondeterministic Turing machine Mcomp to decide if a natural number x,
represented as xb, is a composite number (a composite number is a number that is not
prime). Your NTM must be a decider (i.e. halt no matter what non-deterministic
choices it makes) and furthermore halt within O(poly(|xb|)) steps (i.e. work in poly-
nomial time). To do the latter, you must exploit non-determinism.

Describe your construction clearly (it need not be formal) and in su�cient detail so
that is understandable, clear and easy to see it's correct.

Solution:

The idea is to non-deterministically generate two numbers a and b with leftmost digit
equal to 1, at least 2 digits (we want to avoid a = 1 or b = 1) and at most |xb| digits
(equivalent to guessing a and b), compute ab and compare the result with xb and accept
i� they are the same.

4

The key point is that this NTM will accept i� at least one of this guesses succeed and
we know that a number is composite i� there is some factorization of that number,
therefore NTM peforms exactly what we are looking for (in other words: if the number
is composite there is a lucky guess that exactly guesses the factors and accepts, and if
the number is prime no such lucky guess exists).

Algorithm Mcomp(xb)
1. a ←�1�
2. b ←�1�
3. for i ←1 to |xb| − 1
4. do d ←Non-deteministically pick from {�0� , �1� , ε}
5. a ←concatenate(a, d)
6. d ←Non-deteministically pick from {�0�,�1� , ε}
7. b ←concatenate(b, d)
8. m ←Multiply(a, b)
9. if m = xb
10. then return true

11. else return false

Let's analyse the running time. The amount of work done in one iteration of the for
loop needs constant time (lines 4,5,6,7). The loop is being executed |xb| times therefore
the whole loop needs time O(|xb|) to complete. Moreover at each step of the loop, |a|
and |b| grow by at most 1, therefore at the end of the loop we have |a| = O(|xb|) and
|b| = O(|xb|).
Line 8 calls the black box and we assume that the black box performs multiplication in a
polynomial time bound in terms of its input length, so this will need O(poly(|a|+|b|)) =
O(poly(|xb|)).
The rest of the code needs constant time (lines 1,2,9,10,11), therefore the total time is:
O(1) +O(|xb|) +O(poly(|xb|) = O(poly(|xb|)).

5. Dovetailing [Category: Construction, Points: 20]

Prove that the language Ltwo = { 〈M〉 | |L(M)| ≥ 2} is Turing-recognizable. Infor-
mally, Ltwo is the set of Turing machines that accept at least two strings.

Solution:

We use dovetailing to prove that this languages is TM-recognizable.

Algorithm A(〈M〉)
1. if 〈M〉 is not an encoding of some TM
2. then return reject

3. for i ←1 to ∞

5

4. do counter := 0
5. for j ←1 to i
6. do Simulate M on wj for i steps
7. if M accepts
8. then counter := counter + 1
9. if counter ≥ 2
10. then return accept

6. (Extra Credit) Highly Non-recognizable (NOT COMPULSORY FOR HONORS) [Category:
Proof, Points: 20]

Let LALL = {〈M〉|M is a TM with input alphabet Σ and L(M) = Σ∗}.
Informally, LALL is the set of TMs that accept every input string.

We want you to show that neither LALL nor its complement is TM-recognizable!

You can assume that all strings encode some Turing machine, and hence
LALL = {〈M〉|M is a TM with input alphabet Σ and L(M) 6= Σ∗}.

(a) Prove that LALL is not TM-recognizable.

Hint: Be careful when using reductions to prove non-recognizability. When you
reduce A to B in order to show that if B was recognizable, then A is recognizable,
you create a recognizer for A using a recognizer for B. However, you must be
careful not to �ip the answer given by the oracle recognizing B as recognizable
languages are not closed under complement.

Solution:

We know that ATM is recognizable but not decidable, hence its complement is not
TM-recognizable. We will use reduction from ATM to prove that LALL is not TM-
recognizable. Suppose that LALL is recognizable, then there exists a recognizer
MALL, such that L(MALL) = LALL.

Consider TM N :

Algorithm N (〈M,w〉)
1. Construct M ′ as described below.
2. Feed M ′ to MALL.
3. if MALL accepts
4. then return accept

5. else return reject

Algorithm M' (x)
1. Simulate M on w. if M accepts
2. then return accept

6

3. else return reject

Consider the language of M ′. L(M ′) = Σ∗ if M accepts w, and L(M ′) = ∅ if M
does not accept w. If we feed M ′ to MALL, it will accept it if and only if M does
not accept w. This means that N is a recognizer for ATM . Contradiction.

(b) Prove that LALL is non-recognizable.

Hint: This direction is trickier. Assume LALL is recognizable and that MALL is
a TM recognizing it. Note that we cannot assume that MALL halts on all inputs.
All we know is that it accepts x i� x ∈ LALL. You may use the existence of
MALL to show that ATM is recognizable, which we know is false. Also, when you
construct the recognizer, when it is given input 〈M,w〉, you may want to consider
simulating M on w for a �nite number of steps.

Solution:

Suppose that LALL is recognizable, then there exists a recognizerMALL, such that
L(MALL) = LALL.

Consider TM N :

Algorithm N (〈M,w〉)
1. Construct M ′ as described below.
2. Feed M ′ to MALL.
3. if MALL accepts
4. then return accept

5. else return reject

Algorithm M' (x)
1. Simulate M on w for |x| steps. if M accepts
2. then return reject

3. else return accept

Consider the language of M ′. L(M ′) = Σ∗ if M does not accept w, and L(M ′) =
{x | |x| ≤ kand M accepts w in k steps} if M does not accept w. If we feed M ′

to MALL, it will accept it if and only if M does not accept w. This means that
N is a recognizer for ATM . Contradiction.

7

	Homework 0 (Spring 10): Problem Set 8

