Problem Set 8

Spring 10

Due: Tuesday, April 20, in class before the lecture.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.uiuc.edu/class/sp10/cs373/

1. E.T. [Category: Puzzle, Points: 5]

Show that the problem of deciding whether aliens exist in the universe is decidable. More precisely, show that there is a Turing machine that will print "YES" if there are aliens in the universe, and "NO" otherwise!
2. Reduction à la Rice's Theorem [Category: Proof, Points: 20]

A language $L \subseteq \Sigma^{*}$ is closed under reversal if for every $w \in L, w^{R} \in L$.
Show that $L_{\text {rev }}=\{\langle M\rangle \mid M$ is a $T M$ and $L(M)$ is closed under reversal $\}$ is undecidable.

You may not simply appeal to Rice's theorem (however, you can adapt the proof of Rice's theorem to solve this problem).

3. Queueueueueueue [Category: Proof, Points: 20]

A queue automaton is an automaton with finitely many states, that can manipulate an (unbounded) queue data-structure. Fix an input alphabet Σ and a queue alphabet Γ, where $\Sigma \subseteq \Gamma$. The input, a word in Σ^{*}, is given to the queue automaton in the queue, and in each step the automaton can enqueue a letter onto the queue, or dequeue a letter from the queue. A queue is simply a FIFO (first-in-first-out) data-structure, and can contain any number of letters. The queue automaton is non-deterministic, and accepts a word if there is some way to reach an accept state.
Show that the membership problem for queue automata in undecidable.
In other words, show that, given a queue automaton QA and a word $w \in \Sigma^{*}$, checking whether $Q A$ accepts w is undecidable.
Your answer can be at a high-level description of a reduction.
Below is a formal description of a queue automaton in case you want to understand the question better using a more precise description (you need not give the reduction in this kind of detail).
Let $\Gamma_{\epsilon}=\Gamma \cup\{e p s\}$.
A queue automaton is a tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}\right)$ where Q is a finite set of states, $q_{0} \in Q$ is the initial state, $q_{a c c} \in Q$ is the accepting state, and $\delta \subseteq Q \times \Gamma_{\epsilon} \times \Gamma_{\epsilon} \times Q$.
Intuitively, if $\left(q, a, b, q^{\prime}\right) \in \delta$, then it means that the automaton can go from state q to state q^{\prime} by dequeuing a from the queue and enqueing b to the queue.
Formally, a configuration of a queue automaton is a pair (q, x) where $q \in Q$ and $x \in \Gamma^{*}$ (q is the state the queue automaton is in, and x is the content of the queue, with the
head of the queue being the first letter in x and the tail of the queue being the last letter in x).
We define the transitions between configurations as follows: for any $x \in \Gamma^{*}, a, b \in \Gamma$, $(q, a x) \rightarrow\left(q^{\prime}, x b\right)$ iff $\left(q, a, b, q^{\prime}\right) \in \delta$. (This captures a move that dequeues a and enqueues b.)
A word w is accepted by the queue automaton if there is a sequence of configurations $C_{1}, C_{2}, \ldots, C_{n}$ such that $C_{1}=\left(q_{0}, w\right)$, for each $1 \leq i<n, C_{i} \rightarrow C_{i+1}$, and $C_{n}=\left(q_{a c c}, y\right)$ for some $y \in \Gamma^{*}$.
4. Nondeterminism [Category: Construction, Points: 20]

For every natural number n, let n_{b} be the binary representation of n. For example, $5_{b}=101$. Assume there is a TM, Multiplier, that when given inputs m_{b} and n_{b} on two tapes, outputs $(m * n)_{b}$ on the third tape. The TM Multiplier is provided for you as a black box that you can use.

Construct a nondeterministic Turing machine $M_{\text {comp }}$ to decide if a natural number x, represented as x_{b}, is a composite number (a composite number is a number that is not prime). Your NTM must be a decider (i.e. halt no matter what non-deterministic choices it makes) and furthermore halt within $O\left(\operatorname{poly}\left(\left|x_{b}\right|\right)\right)$ steps (i.e. work in polynomial time). To do the latter, you must exploit non-determinism.

Describe your construction clearly (it need not be formal) and in sufficient detail so that is understandable, clear and easy to see it's correct.
5. Dovetailing [Category: Construction, Points: 20]

Prove that the language $L_{\text {two }}=\{\langle M\rangle| | L(M) \mid \geq 2\}$ is Turing-recognizable. Informally, $L_{\text {two }}$ is the set of Turing machines that accept at least two strings.
6. (Extra Credit) Highly Non-recognizable (NOT COMPULSORY FOR HONORS) [Category: Proof, Points: 20]

Let $L_{A L L}=\left\{\langle M\rangle \mid M\right.$ is a TM with input alphabet Σ and $\left.L(M)=\Sigma^{*}\right\}$.
Informally, $L_{A L L}$ is the set of TMs that accept every input string.
We want you to show that neither $L_{A L L}$ nor its complement is TM-recognizable!
You can assume that all strings encode some Turing machine, and hence
$\overline{L_{A L L}}=\left\{\langle M\rangle \mid M\right.$ is a TM with input alphabet Σ and $\left.L(M) \neq \Sigma^{*}\right\}$.
(a) Prove that $\overline{L_{A L L}}$ is not TM-recognizable.

Hint: Be careful when using reductions to prove non-recognizability. When you reduce A to B in order to show that if B was recognizable, then A is recognizable, you create a recognizer for A using a recognizer for B. However, you must be careful not to flip the answer given by the oracle recognizing B as recognizable languages are not closed under complement.
(b) Prove that $L_{A L L}$ is non-recognizable.

Hint: This direction is trickier. Assume $L_{A L L}$ is recognizable and that $M_{A L L}$ is a TM recognizing it. Note that we cannot assume that $M_{A L L}$ halts on all inputs. All we know is that it accepts x iff $x \in L_{A L L}$. You may use the existence of $M_{A L L}$ to show that $\overline{A_{T M}}$ is recognizable, which we know is false. Also, when you construct the recognizer, when it is given input $\langle M, w\rangle$, you may want to consider simulating M on w for a finite number of steps.

