Problem Set 7

Spring 10
Due: Thursday Mar 25 in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. The way to Thilisi |Category: Puzzle, Points: 10|

On your way to Thilisi, you come across a fork in the road, one going left and one
going right, and you wonder which one goes to Thilisi. Fortunately, a woman from the
neighboring village of Truthli sits on a boulder at the fork, eating peanuts, who surely
knows the way. The people of Truthli are peculiar— a Truthli citizen either speaks
always the truth or always lies (how this choice is made at birth is still mysterious).
Of course, you do not know this woman’s orientation to truth.

Come up with one question you can ask the woman from Truthli such that from her
answer you can infer which road leads to Thilisi.

2. Reductions [Category: Proof, Points: 20]

(a)

Reductions for decidability:

C' is a restricted class of Turing machines for which ¢s373.com provides a very
useful Turing machine M¢ that takes in a pair (M, D), where M is a Turing
machine in class C, and D is a DFA, and accepts iff L(M) N L(D) # 0. In other
words, M¢ can decide whether the language of a Turing machine in class C' has
a common word with the language of a DFA D.

More precisely,
L(Mc)={(M,D) | M is a TM in C and D is a DFA and L(M) N L(D) # 0}.

We would like to now solve the membership problem for Turing machines in class
C: given a TM M in C and a word w, we want to decide whether w € L(M).
More precisely, we want to show that

Loemy = {{M,w) | M is a TM in C and w € L(M)} is decidable.

Prove that L,,emp is decidable by using a reduction.

Reductions for undecidability:
A Turing machine rejects a word w if, when started with input w, it halts and
reaches the reject state. (Note: If a TM does not accept w, it does not mean it
rejects w, as it may not halt on w).

Let L,o; = {(M,w) | M is a TM and M rejects w}.
Show that L,.; is undecidable, using a reduction, and by using the fact that the

universal language L, (or Arys in Sipser) is undecidable.
Recall that L, = {(M,w) | M is a TM and M accepts w}.

http://www.cs.uiuc.edu/class/sp10/cs373/

Solution:

(a)

We will show this by reducing Lyemp to L(M.).

The TM deciding L,,emp will decide whether M accepts w by constructing a DFA D
accepting the language {w} and by using the TM M to figure out if L(M) N L(D) is
empty.

The TM deciding L,,emp will work as follows.

Input: (M, w)

Check if M is a valid Turing machine.

Construct a DFA D that accepts w and only w. Le. L(D) = {w}.
Feed (M, D) to Mc.

Accept iff Mo accepts.

Since the DFA D accepts {w}, L(M) N L(D) # 0 iff w € L(M). Hence the above TM
accepts the language Lpempy = {{(M,w) | M is a TM in C and w € L(M)}.

Note that the above TM for L,,...; is a decider, as Steps 2 and 3 always halts, and Step
4 halts because My is assumed to be a decider.

Hence if M., is a decidable, then L, is also decidable.

We will show this by reducing L,, to L,.;. Since L, is undecidable, it follows that L,;
is undecidable.

Assume there is a TM M,; that decides L,.;. The Turing machine M, deciding L,, will,
on input (M, w), build a TM M’ such that M’ rejects w iff M accepts w. It will feed
(M',w) to M,.; to figure out whether M’ rejects w, from which it will deduce whether
M accepts w.

We build the TM M,, that decides L, as follows:

1. Input: (M, w)

2. Check if M is a valid Turing machine. If not, reject. Let gqc. and g¢,.; be the accepting
state and rejecting state of M, respectively.

3. Construct the TM M’ from M, by making g,. the rejecting state and g,.; the
accepting state.

4. Feed (M, w) to M,;.

5. Accept iff Mo rejects.

SN =

When M runs on w, if M halts and accepts, then the corresponding machine M’
constructed by the decider above, when running on w, will halt and reject. If M does
not accept w, then it could be because M does not halt or halts and rejects. In either
case, M’ will not reject w. Hence M’ rejects w iff M accepts w.

Hence the Turing machine M, above accepts L,.

Note that the TM M, above for L, halts on all inputs because Step 3 simply constructs
the code of M’ from M, and this code transformation (which involves just flipping the
accept and reject states of M) can be done in a finite number of steps. Step 2 is also a
check that takes only a finite number of steps. Step 4 halts because M,.; is assumed to
be a decider, and hence halts on all inputs. Hence the TM M, is a decider for L,.

3. TM to NFA |Category: Proof., Points: 20|

An Right-move Turing Machine (RTM) is Turing that can only move its head to the
right. It can not move it to the left or leave in the same position. More formally, a
RTM is a tuple M = (Q,%,T,0,qo, ¢, g-) Where @ is a set of states, ¥ is the input
alphabet, T" is the tape alphabet, qy, ¢, and ¢, are the initial, accept and reject states
respectively and 6 : Q X T — @ x T x {R} is a transition function. Prove that the
languages accepted by RTMs are regular by giving a construction of a DFA/NFA from
RTM.

Solution:

Intuitively, we take a TM and make an NFA that consists of two phrases(transitions between
@ and P, respectively). The first phrase emulates the TM on symbols from the input
alphabet. Note that since the TM will never be able to read any symbol that it writes (since
the head always moves right), the NFA can ignore the symbols written by the TM. The
second phrase emulates the TM on the "blank" symbol using epsilon-transitions. We have
epsilon transitions from the first part to the second from the states that had a transition on
"blank" symbol. Moreover, we make sure that the NFA stops simulating the TM when the
TM reaches an accepting or rejecting state.

Let M = (Q,%,T,9, qo, Gaces ¢rej) be a RTM. We will construct an NFA A = (@', X', ', ¢, ')
that will accept the same language as M. The set of states is Q' = @ x {0, 1} (i.e. we have
two copies of states in Q). ¥ =X, ¢}, = (¢0,0), F = {(Gace;0), (qace; 1)} where g, = ¢; for
some ¢.

The §’-function is:

(§'((g,0),a) ={(¢,0)} ifd(g,a) =(d,c,R),for some c € T,\Va € 3, q & {qace; Grej }
8 ((¢,0),e) =A{(¢,1)} ifd(q,.) = (¢, ¢, R),for some ¢ € T, q & {qacc, Gre; }

< ¢'((¢,0),a) =0 Va € XU {€},q € {qace Grej}
0 ((¢,1),e) =A{(¢,1)} itd(q,.) = (¢, c,R) for some ¢ € T, ¢ & {Gacc, Gre; }

| 0'((¢,1),a) =0 Ya € ¥,Vq € Q.

A gist of a proof as to why the above construction works. If the TM, given an input w,
runs on w moving right, and say reads n blank characters beyond the word w to reach a
state ¢, then the NFA simulate the TM by reading w, then will jump from the 0’th copy to
the 1’st copy of the state, and simulate the TM moving right using e transitions and will be
able to reach the same state ¢ (i.e. reach (g, 1)). Also, it is clear that the NFA does not do
anything other than the above simulation. Hence it accepts precisely those words that the
TM accepts.

4. Enumerate lexicographically [Category: Proof., Points: 20|

Recall the definition of an enumerator(Sipser p. 152). Prove the following theorem
which extends Theorem 3.21 in the Sipser book:

A language is Turing-decidable if and only if some enumerator enumerates it in lexico-
graphic order.

Solution:
We show the proof in both directions.

(=) If TM M decides a language A, we can construct the following enumerator E for A.
Let s1, 9, 3,... be the list of all possible strings in X* in lexicographic order. Let us fix a
computable enumeration, i.e. there is a TM L that outputs s; when given input .

Then £ ="

1 Ignore the input.
2 Repeat the following for i =1,2,3, ...

3 Compute s; using L, run M on s;. If M accepts, print out s;."

Note that in Step 3, since M is a decider, it always halts with accept or reject. Then E
enumerates all strings in lexicographical order, and prints out a string w iff the string is in
A. Thus E prints all strings of A in lexicographical order.

(<) Using an enumerator F that enumerates a language A in lexicographic order, we will
construct a TM M that decides A. We consider two cases: if A is finite, it is Turing-decidable
because all finite languages are Turing-decidable; if A is infinite, the TM M works in the
following way: On input w,

1 Run E until a string greater than w in lexicographic order appears.

2 Every time that E outputs a string, compare it with w. If the string is the same as w,
accept.

3 When E has output a string that is lexicographically greater than w, reject.

Clearly, if M accepts w, then w is enumerated by F£.

Note that the run of M eventually stops (though E never stops), since A is infinite and
hence E must at some point output w or a string lexicographically greater than w. If a
string greater than w is output, and w has not appeared yet, it will never appear, because
E enumerates strings in A in lexicographical order; hence M can safely reject w. This shows
that if F enumerates w, then M accepts w.

Thus M indeed decides A.

5. (ExtraCredit) Two-Phase TM [Category: Comprehension, Points: 20]

We define a Two-Phase TM, M = (Q,%, T, o, 91, qo, q1, Fo, F1) as follows:

@ is the set of states of this machine (a finite set).

Y and I' are input and tape alphabet respectively (_ € I' and ¥ C T" — {_}).
90, q1 € Q and Fy, Fy C Q.

Jp: QX —=QxT—={_}and 0; : Q@ xI' = Q.

M has two tapes: @), and @),. At the beginning of the computation, the input string
is written at the start of @), and the two other tapes are blank. The head of each
tape is initially located at the beginning of that tape. The computation has two phases
(starting with phase 1 and in state gp). The following recipe tells you how M operates
in each phase:

Phase 1: Assume that M is in state ¢ and the head of @) is on top of symbol a.
Assume dy(q, a) = (p,b). If p ¢ F,, then the head of @, just goes one step to the right,
the head of @), first writes b on @), and then goes one step to the right, and finally
state of M changes to p and M continues to operate in Phase 1. If p € Fp, then the
head of @), writes b on the tape and immediately jumps to the beginning of the tape,
state of M changes to ¢; and Phase 1 ends (which means that Phase 2 starts).

Phase 2: Assume that M is in state ¢ and the head of @), is on top of symbol
a. If a = _, then the computation stops, M accepts iff ¢ € F;. Otherwise assume
1(¢,a) = p. Then the head of @), progresses one step to the right and M switches to
state p. M will continue to operate in Phase 2.

As usual, we define L(M) to be the set of all those strings in ¥* that M accepts. Prove
that L(M) is regular.

	Homework 0 (Spring 10): Problem Set 7

