
Problem Set 6Spring 10Due: Thursday 2pm, 18th March, in class before the lecture begins.Please follow the homework format guidelines posted on the class web page:http://www.cs.uiuc.edu/class/sp10/cs373/1. [Category: Closure properties, Points: 40]Prove that the following languages are not regular using only closure properties. Youmay assume that regular languages are closed under union, intersection, concatenation,complement, reverse and homomorphism. You may also assume that {0n1n | n ≥ 0}is not regular.Closure under homomorphisms: We de�ne homomorphisms as follows. Let Σ and
Π be two �nite alphabets. A homomorphism is a function h : Σ → Π∗, that maps asymbol from the alphabet Σ to a word in Π∗. We can extend this function to strings:
h(x1x2 . . . xn) = h(x1) · h(x2) · . . . · h(xn), where x1 . . . xn ∈ Σ∗. Intuitively, we justtransform each symbol of the string and then concatenate everything together. We cannow extend this function to languages: h(L) = {h(w) | w ∈ L}. It now turns out thatregular languages are closed under homomorphisms.Theorem. Closure under homomorphisms: If L is a regular language over Σand h : Σ→ Π∗ is a homomorphism, then h(L) is also regular.For example, if Σ = {0, 1, 2} and Π = {a, b}, and h is a homomorphism that maps
h(0) = ab, h(1) = ε and h(2) = bb, then since L = (01)∗12∗ is regular, h(L) = (ab)∗(bb)∗is also regular. You may assume the above theorem to solve the problems below.Prove that these languages are not regular:(a) Lk = {0kn1kn | n ≥ 0} for any �xed k (Hint: do this one �rst {02n12n | n ≥ 0})Solution:In all of these problems we assume that the set in question is regular. Thenby using operations that preserve regularity we obtain a set that we know is notregular (for example {0n1n | n ≥ 0}). We conclude that our assumption is wrongand that the set in question is irregular.As a warm-up we �rst prove it just for L2: Assume L2 is regular. Then byclosure properties A = L2 ∪ ({0}L2{1}) is regular too. Now note that all thestrings of the form 0n1n are in A (when n is even 0n1n ∈ L2 and when n is odd

0n1n ∈ ({0}L2{1})), therefore A = {0n1n | n ≥ 0}. But we know that this lastset is not regular and therefore we have got a contradiction. So L2 is not regular.Note for arbitrary k: Assume Lk is regular. Note that ⋃
k−1

i=0
{0i}Lk{1i} = {0n1n |

n ≥ 0} (why? categorize strings in 0n1n by the remainder of n on k), but we1

http://www.cs.uiuc.edu/class/sp10/cs373/

know that this last set is not regular (while it should be by closure properties).Therefore Lk is non-regular.(b) L = {02n13n | n ≥ 0} (Hint: use homomorphism)Solution:Assume L is regular. De�ne this homomorphism: h(0) = 000 and h(1) = 11.Then observe that h(L) = {06n16n | n ≥ 0} = L6, which we know is not regular(previous part) while by closure properties it should be. Therefore L is non-regular.(c) L = {0n$1n$$∗ | n ≥ 0}Solution:Assume L is regular. Let A = L ∩ L(0∗$1∗$) = {0n$1n$ | n ≥ 0}. Now considerthis homomorphism: h(0) = 0, h(1) = 1 and h($) = ε. Observe that h(A) =
{0n1n | n ≥ 0}. This last set is not regular while by closure properties it shouldbe. Therefore L is not regular.(d) L = {w1$w2$w3 | w1, w2, w3 ∈ {0, 1}∗ number of 0s in w1 is equal to the number of 1s in w2}Solution:Assume L is regular. Let A = L ∩ L(0∗$1∗$) = {0n$1n$ | n ≥ 0}. Using h fromthe previous part: h(A) = {0n1n | n ≥ 0}. Again the last set is not regular whileclosure properties imply that it should be. Therefore L is non-regular.(e) L = {0n$0m | 0 ≤ n ≤ m}Solution:Assume L is regular. Observe that L ∩ LR = {0n$0n : n ≥ 0}. We know thatthis last set is non-regular (from MNT), while it should be regular by closureproperties. Thus we get a contradiction and L can't be regular.2. 2D Tape TM [Category: Simulation., Points: 20]A two-dimensional Turing machine is like a Turing machine except that instead of aone-dimensional tape it has a two-dimensional tape that is like the upper right quadrantof the plane, in�nite in up and right directions. It has a �nite input alphabet Σ anda �nite tape alphabet Γ. If x ∈ Σ∗ is the input, |x| = n, the machine starts in itsstart state s with x written in tape cells (0, 0), (0, 1), . . . , (0, n−1). It has a read/writehead initially pointing to the origin (0, 0). In each step, it reads the symbol of Γ2

currently occupying the cell it is scanning. The transition of the Turing machine tellsthe TM, when reading a symbol and when at the current state of the �nite control,to rewrite the symbol to another one in Γ, and moves the head either up, down, leftor right, and move to a new state. Prove that two-dimensional TMs and normal TMsare equivalent. Describe the simulations informally but in su�cient detail that thesimulation is understandable, clear and easy to see it's correct.Solution:We �rst simulate the 2D tape with a 1D tape as follows:1 Introduce a fresh new symbol $ into the input alphabet Γ. The row of the 2D tapestarting from the "bottom-most" row are written in the 1D tape next to each other,as in the �gure below. Note that this is indeed possible, at any point of time, theTM has looked at only a �nite number of rows, and a �nite number of tape cells ineach row.2 When the machine tries to move right from a cell in the 2D tape, we can simulate itin the 1D tape trivially, except when it tries to move right from the rightmost cell ina row. In that case, we "make room" for the new tape cell by shifting all the symbolsto the right. For instance, when the machine tries to move right after reading x5 inthe �gure, we simulate the e�ect in the 1D tape as follows: We move all the symbolsstarting from the $ right after x5 in the 1D tape, one cell to the right. In the newlyvacant cell, we write a blank, and continue simulating.3 When the machine tries to move left from the leftmost cell in a row, we do noth-ing(The machine hits the wall). Otherwise, we can trivially simulate it in the 1Dtape.4 When the machine tries to move up, we move left until we reach a $ symbol todetermine which column we are in. Then we move right beyond the next $ and intothe corresponding column one row up(To count, we might use an auxiliary tape andlater use the 2-tape TM to 1-tape TM simulation). If there is no enough room inthe next row, we make room by moving all the tape cells to the right, just as in step2.5 When the machine tries to move down, we proceed exactly as in step 4, exceptthat now, we move one row down. In case we are in the bottommost row, we donothing(Again, the machine hits the wall)....
t t t t · · · Row 3
x6 t x7 t · · · Row 2
x4 x5 t t · · · Row 1
x1 x2 x3 t · · · Row 0

x1 x2 x3 $ x4 x5 t $ x6 t x7 $ · · ·3

In the other direction, to simulate a 1D tape TM with a 2D tape TM, we simply usethe bottommost row of the 2D tape, then an 1D tape TM is automatically a 2D tapeTM.3. Enumeration [Category: Comprehension, Points: 20]Fix an alphabet Σ. Assume we �x some encoding to represent regular expressions over
Σ and DFAs as binary strings. (so as usual 〈R〉 represents the binary encoding of theregular expression X). Assume also that there is some encoding of DFAs as binarystrings.Consider the following language:
L = {〈R〉 |R is a regular expression such that there issome DFA D with language L(R) and 〈D〉 is a prime number written in binary.}In other words, L is the set of all encodings of regular expressions R such that someDFA D, whose binary representation represents a prime number, accepts the samelanguage as that of R.Show that L is TM-recognizable by constructing a TM recognizing L. Your construc-tion could be pseudo-code or an exact explanation of how it works. You don't need todo a formal low-level construction, but just intuitively describe a high-level construc-tion.Solution:The idea is that once we have the regular expression R, we start checking all thepossible DFA's (we know that DFA's are enumerable, in fact lines 2-5 in pseudo-codebelow enumerate all DFA's). Once we get a DFA 〈D〉 that we want to check, �rst wecheck that 〈D〉 is a prime number (just by dividing it to all the smaller numbers tosee whether it has a nontrivial factor) and second we check that L(D) = L(R) (byconverting R to a DFA, building a new DFA D′ for L(R)∆L(D) (symmetric di�erence:
A∆B = (A− B) ∪ (B − A)) and checking whether this DFA accepts something or itslanguage is empty). We accept if both checks succeed otherwise, we check the nextDFA.Now note that once the regular expression 〈R〉 is a member of L, such a DFA D existsfor it (by the de�nition of L) and since we are checking all the DFA's (and each check�nishes in �nite amount of time) we will �nally �nd such a witness DFA. Therefore bythe de�nition, this construction is a recognizer for language L.Here is pseudo-code for this recognizer:Algorithm isInL(r) 4

1. Check that r is a valid encoding of some regular expression, say r = 〈R〉.2. N ←some enumerator of all binary strings3. for i ←1 to ∞4. B ←N (i)5. if B is a valid encoding of some DFA D and isPrime(B)(∗ To check that B is prime, we just divide it on all naturals smaller than B to ensure ... ∗)(∗ ... it has exactly two divisors ∗)6. then if L(D) = L(R)(∗ for this check, we can convert R into a DFA, build a DFA D
′ for ... ∗)(∗ ... L(R)∆L(D), and check that D

′ has no path from its initial state to some �nal state. ∗)7. then return �yes�.Algorithm isPrime(x)1. if x = 12. then return false3. for i←2 to x− 14. do if x/i is integer5. then return false6. return true

5

	Homework 1 (Spring 10): Problem Set 6

