Problem Set 4

Spring 10

Due: Thursday Feb 25 in class before the lecture.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.uiuc.edu/class/sp10/cs373/

1. Regular expressions [Category: Comprehension, Points: 20]

Construct an NFA with the same language as the regular expression $(a+b)^{*}(a b+b)$.

Solution:

2. Regular expressions [Category: Comprehension, Points: 20]

Use the algorithm learned in class to obtain a regular expression with the same language as the NFA below.

Solution:

3. NFA and non-determinism [Category: Construction, Points: 20]

Given $k>0$, construct an NFA with at most $7 k^{2}$ states for the following language over alphabet $\{0,1,2\}$

$$
L_{k}=\left\{w w^{\prime}:|w|=\left|w^{\prime}\right|=k, w \neq w^{\prime}\right\} .
$$

(Hint: you need to exploit non-determinism to obtain such a small NFA).

Solution:

The idea is to remember the i-th character of string w (non-deterministically) and compare it with i-th character of string w^{\prime}. NFA accepts if these two are not the same (note that this would give the NFA enough evidence to conclude $w \neq w^{\prime}$ and also that if $w \neq w^{\prime}$, then at least one such evidence exists).
We construct the NFA $N=(Q, \Sigma, \delta,(1), F)$ as follows:
$\Sigma=\{1,2,3\}$
$Q=\{(i): 1 \leq i \leq k\} \cup\{(i, a, j): a \in \Sigma, 1 \leq i \leq j \leq k\} \cup\{(i, a, k, j): a \in \Sigma, 1 \leq i, j \leq k\}$
$F=\{(i, a, k, k): 1 \leq i \leq k, a \in \Sigma\}$
transition below: non-deterministically either just counting one symbol of w, or counting and remembering it
$\forall a \in \Sigma, i<k, \quad \delta((i), a)=\{(i, a, i),(i+1)\}$
$\forall a \in \Sigma, \quad \delta((k), a)=\{(k, a, k)\}$
$\forall a, b \in \Sigma, j<k, \quad \delta((i, a, j), b)=\{(i, a, j+1)\}$
$\forall a, b \in \Sigma, \quad \delta((i, a, k), b)=\{(i, a, k, 1)\} \quad$ passes the boundary of w and w^{\prime}
$\forall a, b \in \Sigma, j<k, j \neq i-1 \quad \delta((i, a, k, j), b)=\{(i, a, k, j+1)\}$ counting w^{\prime}, looking for i-th character
$\forall a \in \Sigma, b \in \Sigma-\{a\}, \delta((i, a, k, i-1), b)=\{(i, a, k, i)\}$ checks for non-equality of i-th character of w and w^{\prime}

4. Suffix languages [Category: Comprehension, Points: 20]

(a) Give the suffix languages for the following DFA.
(b) Merge states with the same suffix language to get a smaller DFA. Draw the resulting DFA.
(c) Prove that all your suffix languages are different: for each pair of suffix languages give a sample string that belong to one languages and does not belong to the other one.

Solution:

(a) Give the suffix languages for the following DFA.
$\llbracket L / \epsilon \rrbracket=L_{0}=L_{1}=1^{*} 0(00+01+1)(0+1)^{*}$
$\llbracket L / 0 \rrbracket=L_{2}=(00+01+1)(0+1)^{*}$
$\llbracket L / 00 \rrbracket=L_{3}=(0+1)(0+1)^{*}$
$\llbracket L / 01 \rrbracket=L_{4}=L_{5}=(0+1)^{*}$
(b) Merge states with the same suffix language to get a smaller DFA. Draw the resulting DFA.

(c) Prove that all of your suffix languages are indeed different: for each pair of suffix languages give a sample string that belong to one languages and does not belong to the other one.
$1 \notin \llbracket L / \epsilon \rrbracket$ but $1 \in \llbracket L / 0 \rrbracket$
$1 \notin \llbracket L / \epsilon \rrbracket$ but $1 \in \llbracket L / 00 \rrbracket$
$\epsilon \notin \llbracket L / \epsilon \rrbracket$ but $\epsilon \in \llbracket L / 01 \rrbracket$
$0 \notin \llbracket L / 0 \rrbracket$ but $0 \in \llbracket L / 00 \rrbracket$
$\epsilon \notin \llbracket L / 0 \rrbracket$ but $\epsilon \in \llbracket L / 01 \rrbracket$
$\epsilon \notin \llbracket L / 00 \rrbracket$ but $\epsilon \in \llbracket L / 01 \rrbracket$
5. Non-regularity [Category: Proof., Points: 20]

Prove that the following language is non-regular.
$L=\left\{a^{4 n} b^{3 n} \mid n>=0\right\}, \Sigma=\{a, b\}$

Solution:

We will use MNT to prove this claim.
Let $S=\left\{a^{4 n} \mid n>=0\right\}$, obviously S is an infinite set. Let $x, y \in S$ and $x \neq y$, then $x=a^{4 i}$ and $y=a^{4 j}, i \neq j$. We next choose our witness z to be $z=b^{3 i}$, then $x z=a^{4 i} b^{3 i} \in L$ and $y z=a^{4 j} b^{3 i} \notin L$, since $i \neq j$. Hence, by MNT, L is not regular.

Alternative solution using pumping lemma.
Assume p to be the pumping length for L, we pick w to be $w=a^{4 p} b^{3 p}$. Consider all possible partitioning of w into x, y and z, such that $w=x y z$. From the fact that $|x y|<=p$ we can conclude that $x y$ consists solely of a. Let $k=0$, then $x y^{k} z=x z$. Since $|y|>=1, x z=a^{t} b^{3 p} \notin L$, where $t<4 p . x y \notin L$ for all p and all possible partitionings, hence, by PL, L is not regular.
6. Concatenation [Category: EXTRA CREDIT, Points: 20]

In this question, we want to show that the smallest DFA accepting the concatenation of two languages L_{1} and L_{2} may be exponentially larger than the sizes of the DFAs for L_{1} and L_{2}. Recall that when doing closure under concatenation, the construction in class was done for NFAs; we can do the same construction on DFAs, but the resulting automaton will be an NFA, and converting it to a DFA will give exponentially many states. We want to show that this exponential blow-up is unavoidable.
To this end, let us fix $\Sigma=\{a, b\}$. Show that for any $k \in \mathbb{N}$, there exist two DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}^{s}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}^{s}, F_{2}\right)$ with $O(k)$ states each, such that any DFA accepting $L\left(A_{1}\right) L\left(A_{2}\right)$ has at least $O\left(2^{k}\right)$ states. That is, any DFA accepting the concatenation of the languages of A_{1} and A_{2} will require states exponential in k.

