Problem Set 4

Spring 10

Due: Thursday Mar 4 in class before the lecture.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.uiuc.edu/class/sp10/cs373/

1. Regular expressions [Category: Comprehension, Points: 20]

Construct an NFA with the same language as the regular expression $(a+b)^{*}(a b+b)$.
2. Regular expressions [Category: Comprehension, Points: 20]

Use the algorithm learned in class to obtain a regular expression with the same language as the NFA below.

3. NFA and non-determinism [Category: Construction, Points: 20]

Given $k>0$, construct an NFA with at most $7 k^{2}$ states for the following language over alphabet $\{0,1,2\}$

$$
L_{k}=\left\{w w^{\prime}:|w|=\left|w^{\prime}\right|=k, w \neq w^{\prime}\right\} .
$$

(Hint: you need to exploit non-determinism to obtain such a small NFA).
4. Suffix languages [Category: Comprehension, Points: 20]
(a) Give the suffix languages for the following DFA.
(b) Merge states with the same suffix language to get a smaller DFA. Draw the resulting DFA.
(c) Prove that all your suffix languages are different: for each pair of suffix languages give a sample string that belong to one languages and does not belong to the other one.

5. Non-regularity [Category: Proof., Points: 20]

Prove that the following language is non-regular.
$L=\left\{a^{4 n} b^{3 n} \mid n>=0\right\}, \Sigma=\{a, b\}$
6. Concatenation [Category: EXTRA CREDIT, Points: 20]

Due: Thursday Mar 11 in class before the lecture.
In this question, we want to show that the smallest DFA accepting the concatenation of two languages L_{1} and L_{2} may be exponentially larger than the sizes of the DFAs for L_{1} and L_{2}. Recall that when doing closure under concatenation, the construction in class was done for NFAs; we can do the same construction on DFAs, but the resulting automaton will be an NFA, and converting it to a DFA will give exponentially many states. We want to show that this exponential blow-up is unavoidable.
To this end, let us fix $\Sigma=\{a, b\}$. Show that for any $k \in \mathbb{N}$, there exist two DFAs $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}^{s}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}^{s}, F_{2}\right)$ with $O(k)$ states each, such that any DFA accepting $L\left(A_{1}\right) L\left(A_{2}\right)$ has at least $O\left(2^{k}\right)$ states. That is, any DFA accepting the concatenation of the languages of A_{1} and A_{2} will require states exponential in k.

