
Problem Set 3
Spring 10

Due: Thursday Feb 18 in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. [Category: Comprehension, Points: 20]

Give a regular expression for the following languages:

(a) Σ = {a, b}: The set of all strings where the second letter from the start and the
end is an a.

(b) Σ = {a, b}: The set of all strings that have both aa and bb as a substring.

(c) Σ = {a, b, c}: The set of all strings, such that between any a and c there's at least
one b.

Describe the language of each of the following regular expressions in your own words.
Please be speci�c and try to minimize the amount of mathematical notation you use.

(a) Σ = {a, b}. (ab+ ba)∗
(b) Σ = {a, b}. ((a∗)b(a∗)b(a∗))∗b

(c) Σ = {a, b, c}. ((ε+ a+ aa+ aaa)(b+ c))∗(ε+ a+ aa+ aaa)

Solution:

Give a regular expression for the following languages:

(a) Σ = {a, b}: The set of all strings where the second letter from the start and the
end is an a.
Answer: (a+ b)a(a+ b)∗a(a+ b)

(b) Σ = {a, b}: The set of all strings that have both aa and bb as a substring.
Answer: ((a+ b)∗aa(a+ b)∗bb(a+ b)∗) + ((a+ b)∗bb(a+ b)∗aa(a+ b)∗)

(c) Σ = {a, b, c}: The set of all strings, such that between any a and c there's at least
one b.
Answer: ((ε+ aa∗ + cc∗)b)∗(ε+ aa∗ + cc∗)

Describe the language of each of the following regular expressions in your own words.
Please be speci�c and try to minimize the amount of mathematical notation you use.

(a) Σ = {a, b}. (ab+ ba)∗
Answer: The set of all strings of as and bs that have an equal amount of as
and bs.

1

http://www.cs.uiuc.edu/class/sp10/cs373/

(b) Σ = {a, b}. ((a∗)b(a∗)b(a∗))∗b
Answer: The set of all strings of as and bs that have an odd amount of bs and
end with b.

(c) Σ = {a, b, c}. ((ε+ a+ aa+ aaa)(b+ c))∗(ε+ a+ aa+ aaa)
Answer: The set of all strings of as, bs and cs that contain no more than 3
consecutive as.

2. Intersect 'em [Category: Construction, Points: 20]

You are given two NFAs A1 = (P,Σ, δ1, p0, F1) and A2 = (Q,Σ, δ2, q0, F2).

Construct an NFA that will accept the language L(A1) ∩ L(A2) with no more than
|P | ∗ |Q| states. Also, prove that it indeed accepts the language of the intersection as
stated above.

Solution:

The language L(A1) ∩ L(A2) is accepted by the NFA A = (R,Σ, δ, r0, F), where

R = P ×Q;
δ is a transition function R×Σε → 2R. For any state (p, q) ∈ R, where p ∈ P , q ∈ Q,

and for any input character x ∈ Σε, δ((p, q), x) = {(p′, q′) | p′ ∈ δ1(p, x) ∧ q′ ∈
δ2(q, x)}. Moreover, δ((p, q), ε) = {(p′, q′) | p′ ∈ δ1(p, x)∪{p}∧q′ ∈ δ1(q, x)∪{q}};

r0 = (p0, q0);

F = {(p′, q′) | p′ ∈ F1 ∧ q′ ∈ F2}.

Note that the number of states in A is |P | ∗ |Q|. To prove that A indeed accepts the
language of the intersection, we need to show that for any string w in Σ∗, A accepts w
if and only if both A1 and A2 accepts w:

(⇒) If A accepts w, without loss of generality, it su�ces to show that A1 accepts w.
By the de�nition of acceptance, there is a sequence of states s0, s1, . . . , sn in R
and a sequence of inputs x1, x2, . . . , xn in Σε, such that w = x1x2 . . . xn, s0 = r0,
sn ∈ F , and si+1 ∈ δ(si, xi+1) for every 0 ≤ i ≤ n − 1. Since the states of A
is the product of P and Q, let si = (ui, vi) for each 0 ≤ i ≤ n, where ui ∈ P ,
vi ∈ Q. Now consider the sequence of states u0, u1, . . . , un. Removing those ui+1

and xi+i such that ui = ui+1 and xi+1 = ε yields a sequence u0, u1, . . . , um and
a sequence x1x2 . . . xm By the de�nitions of r0, F and δ, it is easy to see that
u0 = p0, um ∈ F1, and ui+1 ∈ δ(ui, xi+1) for every 0 ≤ i ≤ m − 1. Hence A1

accepts the sequence x1x2 . . . xm, i.e., accepts w.

2

(⇐) If both A1 and A2 accepts w, by de�nition there is a sequence of states
u0, u1, . . . , um in P and a sequence of inputs x1, x2, . . . , xm in Σε, such that
w = x1x2 . . . xm, u0 = p0, um ∈ F1, and ui+1 ∈ δ(ui, xi+1) for every 0 ≤ i ≤ m−1.
Similarly, there is a sequence of states v0, v1, . . . , vk in Q and a sequence of in-
puts y1, y2, . . . , yk in Σε, such that w = y1y2 . . . yk, v0 = q0, vk ∈ F2, and
vi+1 ∈ δ(vi, yi+1) for every 0 ≤ i ≤ k − 1. Then we can unify x1x2 . . . xm
and y1y2 . . . yk to a sequence z1z2 . . . zn by inserting some ε properly. Both se-
quences of states are extended to u0u1 . . . un and v0v1 . . . vn We claim the sequence
(u0, v0), (u1, v1), . . . , (un, vn) accepts the sequence z1z2 . . . zn. The start and �nal
states are easy to verify. For any 0 ≤ i ≤ n − 1, if zi+1 = ε, then either ui or vi
makes a missing transition to ui+1(or vi+1). Otherwise both ui/vi make a normal
transition to ui+1/vi+1, respectively. In both cases (ui+1, vi+1) ∈ δ((ui, vi), zi+1).
Thus A also accepts w.

3. Reverse determinism [Category: Construction, Points: 20]

Recall the formal de�nition of an NFA (Sipser p. 53). Let's generalize the de�nition
by substituting the unique start state q0 by a set of start state S, so that the com-
putation of an NFA is allowed to start from any state in S. A Reverse Deterministic

Automaton(RDA) is an generalized NFA A = (Q,Σ, δ, S, F) where

(a) for each state q ∈ Q, δ(q, ε) = ∅;
(b) for each state q ∈ Q and each character x ∈ Σ, there is a unique p ∈ Q such that

q ∈ δ(p, x);

(c) |F | = 1.

Graphically, an RDA does not allow two distinct states to merge into one state via
two transitions reading the same input. Moreover, an RDA has multiple start states, a
unique accept state, and no ε-transition.

Given an RDA A = (Q,Σ, δ, S, qf), construct an RDA Ā with no more than |Q| states
that will accept the complement language ¯L(A). Proof that Ā is indeed an RDA and
complements A.

Solution:

Let the language recognized by A be L, then the complement language L̄ is simply
accepted by Ā = {Q,Σ, δ, Q− S, qf}. Here is a proof.

Let the reverse language of L be LR = {wR | w ∈ L}. It is easy to prove that

L̄ = (LR)
R
. Starting from A, we are going to built automata for LR, LR and (LR)

R
,

respectively.

3

First, the language LR is recognized by a DFA AR = {Q,Σ, δR, qf , S} where δR is
de�ned so that for any q ∈ Q and x ∈ Σ, δR(q, x) = p where p ∈ Q is the unique state
such that q ∈ δ(p, x). Note that by the de�nition of an RDA, we can always �nd p.
AR is indeed an DFA since the start state qf is unique, the transition function δR is
deterministic. Then we claim that L(AR) = LR. By the de�nition of acceptance, for
any string w = x1x2 . . . xn, w is accepted by AR if and only if there exists a sequence
of states r0r1 . . . rn that ful�lls the acceptance conditions of AR. This is equivalent to
the existence of a reverse sequence rn . . . r2r1 for accepting w

R = xn . . . x2x1 by A:

• AR starts out in the start state qf and ends up in an accept state in S if and only
if A starts in a state in S and ends up in qf ;

• According to δR, AR goes from q to p by reading x if and only if q is one of the
allowable next states when A is in state p and reading x.

Second, thank to the nice closure property of DFAs under complement, the language LR

is recognized by a DFA AR = {Q,Σ, δR, qf , Q−S}, which simply �ips the accept/reject
states of AR.

Finally, by swapping back the start/accept states, an RDA Ā = {Q,Σ, δ, Q − S, qf}
recognizes the reverse language of LR, i.e., LR

R
. Ā is indeed an RDA because simply

�ipping the starting/non-starting states of A a�ects none of the three conditions for

an RDA. The proof is similar to that in the �rst step. Since L̄ = (LR)
R
, Ā recognizes

L̄. Note that the number of states in A and Ā are the same.

4

