Problem Set 2
Spring 10
Due: Thursday Feb 11 in class before the lecture.
Please follow the homework format guidelines posted on the class web page:
http://www.cs.uiuc.edu/class/sp10/cs373/

1. NFA comprehension |Category: Comprehension, Points: 20|
Consider the following NFA M.

(a) Give a regular expression that represents the language of M. Explain briefly why
it is correct. (6 Points)

(b) Recall the definition of an NFA accepting a string w (Sipser p. 54). Show formally
that M accepts the string w = abbab (6 Points)

(c) Let ¥ = {a,b}. Give the formal definition of the following NFA N (in tuple
notation). Make sure you describe the transition function completely (for every
state and every letter). (8 Points)



http://www.cs.uiuc.edu/class/sp10/cs373/

Solution:

(a) The language of M is ab(a Ub)*. Each string in this language can be viewed as ab
followed by a sequence of substrings, either a’s or b’s. If this sequence starts from
a substring of a’s and ends with a substring of b’s, then there is a state sequence
ASXBAE2 . AB2 2 E ... E. Other situations are easy to verify
similarly.

(b) Consider the sequence of states ABEFABE and a sequence of inputs abbeeab. Note
that abbab = abbeeab. The first state A is the start state and the last state F is an
accept state. Moreover, it can be verified that for each two adjacent states s, s’ in the
sequence, there is a transition from s to s’ reading the corresponding inputs. Then by
the definition of acceptance, M indeed accepts abbab.

(c) Formally, N = (Q, %, ,A,F), where
Q - {A7 B7 C’ ‘D7 E};

Y ={a,b};

0 is defined as follows:
0 a b €
Al {ABC} © 1%}
B I} {C} @
C {E} {D} o
D o] {A} {A}
E %) o {B}

F ={C,E}.

2. DFA Transformation |Category: Comprehension, Points: 20|

Given a DFA M = (Q, %, 6, qo, F), we define 7 (M) to be a new DFA (@', 3,0, ¢, F")
such that

Vge @, N, ={6"(q,ab) : a,b € X}
Q" ={(q,Ny) : ¢ € Q} U{T}
F'={(q,Ng) : g € F}

Q6 = (quNQO)

Vg € Q',Va € X,
T q="T
§'(g,a) =1 (0(p,a), Nspay) Ip € Q, ¢ = (p,N,) and Nsg,0) C {6(r,a) : v € Ny}
T otherwise

Let M be the following DFA. Draw 7 (M) (label the states).



Solution:

(¢, {p,q.7})

3. Language Projection |[Category: Proof, Points: 20|

Let’s define w | ¥ to be a word w’, such that w’ is equal to w with all symbols not in
Y removed. For example, abcdbdcad | {a,b, c} = abcbea.

Let L, be a regular language over the alphabet >; and L, be a regular language over
the alphabet X,.

Prove that L = {w € (X, UXs)* | (w | X1) € Ly A (w | 3y) € Ly} is also regular.
Note: X; and X may have common symbols.

Solution:

Theorem 0.1 If language L over alphabet 3 is reqular, then L' = {w € XUT' || (w | ¥) € L}
15 also regular.

Since L is regular, there exists a DFA A = (Q, X, J, qo, F') that accepts L. Let’s construct a
new DFA A" = (Q, X UT,d, g, F') with

fa.o={ (@9 02T

That is, we stay in the current state if the letter is not in the source alphabet and move
according to the d-function of the source DFA otherwise.

To prove that this DFA accepts exactly L’ we need to prove that for any w € ¥ U T, such
that w = 2;...2, and w | ¥ =vy1... ¥y =y where m < n, y1 = i,...,Ym = ;, and
1 <lg < -+ <l



(a) (w]X)eL=we L(A)
(w | ¥) € L means that there exists a subsequence y in w such that w | ¥ = y and
y € L(A). By construction, A" will accept any string w’ € (X UT') that contains y as a
subsequence. w contains y as a subsequence, hence w € L(A’).

(b) we L(A )= (w ]| X)eL

Since w € L(A’), there exists a trace 1o, . .., r, that leads from the start state to the final
state (g0 = ro and r, € F). If for some symbol z; in w, z; ¢ 3, then, by construction,
0'(ri_q,x;) = r; = ri_1, that is, we stay in the same state. w | ¥ will remove all such
symbols from w, but the trace will start and end in the same state as before. That means
that on w | 3, A’ will remain in the final state, or 6" (qy, w) = 6" (qo,w | X) =r, € F.
But since all symbols in w | ¥ are in X, delta is defined on all of these symbols and is
equal to delta’. This means that 6*(qo,w | ¥) =r, € F, and hence (w | ¥) € L.

By the above theorem L) ={w € £, U || (w | ¥1) € L1} and Ly ={w e L, U || (w |
¥) € Lo} are regular.

Since L={w e U% || (w]%X)el; AN (w]| %) €L} =LNL, L is regular as an
intersection of two regular languages.

4. Language of a DFA [Category: Proof, Points: 20|

First have a look at the following claim and its formal proof. The proof uses induction.
You may think that since the claim is an easy fact you don’t need such a heavy
technique for proving it and in fact you are right! We could avoid induction and build
a much easier proof for the claim. The reason that we have applied induction to prove
this claim is to introduce this technique to you.

Claim: The language of the DFA D below is A = {0"1z : x € {0,1}*,n > 0}.
0 0,1

q 1 (»)

Proof: Let L(p) represent the set of all strings that if we feed them to the DFA D,
then D will stop in state p. Similarly define L(q) for state q. Note that since p is the
only final state, we have L(D) = L(p). Instead of proving the Claim directly, we will
introduce a stronger claim and we will prove that stronger claim using induction (and
this stronger claim is easier to attack using induction).

The Stronger Claim: L(q) = C = {0" : n > 0} and L(p) = A = {0"lz : z €
{0,1}*,n > 0}.

Note that the stronger claim asks for everything in the previous old claim and also
asks for something more; this is why sometimes it is called overloaded claim.

4



Proof of the Stronger Claim: Let By represent the set of all binary strings of
length at most k. Using induction on k, we will prove that for every value of k, we
have L(q) N By = C N By, and L(p) N By = AN By, (as an easy exercise, please justify
for yourself that if we prove this, then we have proved the stronger claim).

Base case: When k = 0. We have By = {e}. When we feed € to D, it stops in state
q and therefore L(q)NBy = {e} and L(p)NBy = @. It is trivial to see that CNBy = {¢}
and AN By = &. Therefore we have L(q) N By = C' N By and L(p) N By = AN By.

Inductive Step: Assume that for some k& > 0 we have L(q) N By = C'N By and
L(p) N By = AN By, then we prove that L(q) N Byy1 = C'N Biy1 and L(p) N By =
A ﬂ Bk+1.

First we prove L(q) N Bry1 = C N Bgyq. Since from induction hypothesis we know
L(q) N B, = C N By, we just need to show that L(q) N {0, 1} = C N {0, 1}++!
(justify this for yourself). Let z € L(g) N {0,1}**1 write © = 2’a where 2/ € By and
a=0or 1. Since x € L(q), we have ¢ = §*(q,z) = (6*(¢q,2’),a). From this equation
we have 6*(¢,2') = g and a = 0 (Why?). Since §*(¢,2") = ¢ by definition of L(q)
we have 2’ € L(q), and since 2/ € By we have 2’ € L(q) N By. Since by induction
hypothesis L(q) N By = C N By, we have 2’ € C' N By, and since we know that z’
is of length k, we have 2/ = 0F. But this means that * = 2'a = 00 = 0**!. Since
x was an arbitrary member of L(q) N {0,1}**1 we have L(q) N {0, 1} = {0*1}.
It is also trivial to see that C'N {0, 1}**! = {0*T1}, therefore we have proved that
L(q) N {0, 1} = C' N {0, 1}F+L,

Now we prove that L(p) N Bgr1 = AN Biyq in a similar way. Since from induction
hypothesis we know L(p) N By, = AN By, we just need to show that L(p) N {0, 1} =
AN {0,1}**1 (again justify this for yourself). Let z € L(p) N {0, 1}**! write 2 = 2’a
where ' € By and a = 0 or 1. Since x € L(p), we have p = §*(q,z) = 0(0*(q,2’), a).
From this last equation we have that either 0*(¢,2’) = ¢ and a = 1, or 0*(¢,2’) = p
and a = 0 or 1 (why?).

Casel: When 6*(q,2') = ¢ and a = 1. From definition of L(g) we have that
' € L(q) and since |z'| = k we have 2’ € L(q) N Bx. By the induction hypothesis
L(q) N By, = C'N By and therefore 2/ € C'N By. Therefore 2/ = 0% and 2 = 2'a = 01 €
AN Bk+1.

Case2: When 0*(¢,2’) = p and @ = 0 or 1. By definition of L(p) we have
a2’ € L(p) and hence 2’ € L(p)NBy. By induction hypothesis we have L(p)NB, = ANDBy,
and therefore 2’ € AN By and hence ' = 0"1y for some n > 0 and y € {0,1}* (such
that n + 1+ |y| = k). Hence xz = 2’a = 0"lya € AN By;.

So up to this point we have proved that L(p) N Byy1 € AN Bgy1. Now we prove that
AN Bry1 € L(p) N Bgyy. Let © € AN Byyy we have © = 0™1y for some n > 0 and
y € {0,1}* (such that n + 1+ |y| = k+1). Now:

6"(q,x) = 6"(q,0™"y) = 67(6"(¢q,0"), 1y) = 6"(q, ly) = 6"(0(q, 1),y) = 6" (p,y) =p

Therefore x € L(p) and since already = € By, we have x € L(p) N Bj41, therefore
AN Bry1 € L(p) N Bgyq. So we have proved that AN Byyy = L(p) N By and the
induction is complete. [



Now prove formally that the language of the following DFA is:

{z € {0,1}" : « has odd number of 1’s}

Solution:

Using the sample we saw in this problem, we claim that L(p) and L(q) (for the DFA above)
are the following languages and we prove our claim using induction on the length of strings
in {0, 1}*

L(p) ={z € {0,1}" :  has odd number of 1’s}
L(q) = {z € {0,1}" : « has even number of 1’s}

Again we note that since L(p) is the language of our DFA| the first equality above is basically
what we are asked to prove and the second equality is the extra fact that we want to prove
just because proving this stronger claim makes our induction easier!

Let’s rewrite our claim in a more convenient way for applying induction,
Claim : For any string = of length k£ > 0, we have

x € L(p) <= z € {x € {0,1}" : 2 has odd number of 1’s}
z € L(q) < x € {x €{0,1}" : x has even number of 1’s}

(Note that this claim is exactly our first two inequalities).

Base Case: The claim is true for k = 0.

proof: The only string of length 0 is €. Looking at the DFA we observe that ¢ makes the DFA
to finish in state ¢q. Additionally € has even number of 1’s. Hence both iff ( <= ) relations
are true for x = € and therefore the claim is true for £ = 0.

Induction Hypothesis: If the claim is true for all z of length less than k, then it is also
true for all strings of length k.
proof: Pick an arbitrary string z of length k£ > 1. Write 2 = 2’a where a € {0, 1}.
If z € L(p), then we have two possible subcases:

-2’ € L(p) and a = 0 : Since |2'| = k — 1, by the induction hypothesis the claim is
true for 2’ and therefore ' has odd number of 1’s. Hence x = 2’0 has an odd number of 1’s.



-2’ € L(q) and a = 1 : Again, since |2’'| = k—1, by the induction hypothesis the claim
is true for 2’ and therefore 2’ has even number of 1’s. Hence x = 2’1 has an odd number of
1's.

Therefore we have proved that for all strings of length k
x € L(p) = x € {z € {0,1}" : x has odd number of 1’s}.

Now we prove its reverse. Assume that x has odd number of 1’s. We have two possibilities:
-a = 0 : Since x = 2'a, this means that 2’ has odd number of 1’s. Since
|#/| = k — 1, the claim is true for 2/ and hence 2’ € L(p). But this means that
d*(q, z) = 6*(q,2'0) = 6(0*(¢g, 2"),0) = 6(p,0) = p. Hence = € L(p).
-a = 1 : Since v = 2'a, this means that 2’ has even number of 1’s. Since
|#'| = k — 1, the claim is true for ' and hence ' € L(q). But this means that
0*(q,z) = 0*(q,2'1) = 0(0*(q,2"),1) = 6(q,1) = p. Hence x € L(p).

|

|

Therefore we have proved that for all strings of length &
z € L(p) <=z € {x € {0,1}" : x has odd number of 1’s}

and now we should concentrate on the second iff ( <= ) condition in the claim.
If x € L(q), then we have two possible subcases:

-2’ € L(p) and a = 1 : Since |2'| = k — 1, by the induction hypothesis the claim is
true for 2’/ and therefore 2’ has odd number of 1’s. Hence x = 2/1 has an even number of
1's.

- 2" € L(q) and a = 0 : Again, since |z’'| = k—1, by the induction hypothesis the claim
is true for 2’ and therefore =’ has even number of 1’s. Hence x = 2’0 has an even number of
1s.

Therefore we have proved that for all strings of length &
z € L(q) = z € {x€{0,1}": x has even number of 1’s}.

Now we prove its reverse. Assume that x has even number of 1’s. We have two possibilities:
-a = 0 : Since v = 2'a, this means that 2’ has even number of 1’s. Since
|#'| = k — 1, the claim is true for ' and hence ' € L(q). But this means that
0*(q,z) = 0*(q,2'0) = 6(6*(q,2"),0) = 6(q,0) = q. Hence = € L(q).
-a = 1: Since * = 2'a, this means that 2’ has odd number of 1’s. Since
|#/| = k — 1, the claim is true for 2/ and hence 2’ € L(p). But this means that
0*(q,z) = 0*(q,2'1) = 6(6*(q,2"),1) = 6(p, 1) = q. Hence x € L(q).

|

|

Therefore we have proved that for all strings of length k

x € L(q) <= x € {z € {0,1}" : = has even number of 1’s}

which completes the proof.



5. Extra Credit/Honors |[Category: Proof, Points: 20|
Let L be a regular language. Show that L' = {w : ww® € L} is regular.

Solution:
Let L C ¥* be a regular language. Let A = (Q, 3,0, qo, ') be a DFA accepting L. We will
show L' = {w : ww® € L} is regular by exhibiting an NFA B accepting L',

Intuitively, the NFA B for L' will run two copies of the automaton A (similar to a product
construction), except that the first copy will start from the initial state of A and read the
input w simulating A, while the second copy will start from a final state of A and simulate
A backwards reading w®. If the first copy and the second copy both reach the same state,
after reading w, then we would know that A after reading ww® will start from the initial
state and reach a final state. Hence B can accept w if the two copies reach the same state.
In order for B to begin with a pair of states (qo,qr) where ¢ € F, we create a new initial
state ¢ from which B can go to any state of the form (qo, ¢f) on reading e.

Here is the formal construction. Let B = ((Q X Q) U{Ginit }, 2, ', Ginit, F') be the NFA where:

® 8'(qinits€) = {(q0.4r) | 45 € F'}

e For every a € 3, §'(qinit, a) = 0

o Forevery a €3, ¢,¢ € Q, §((¢,4),a) ={(p,p) Ip=06(¢,a), ¢ € 6(p,a)}.
e For every ¢, € Q, §((q,¢),e) =0

o I"={(¢,9)|4€Q}

We can now prove that B accepts L.

First, let us prove that L' C L(B). Let w € L', i.e. let ww' € L = L(A). Let w = ajas . . . ay,
and let the (accepting) run in A on ww' be:

ai a an an an—1 a1
q0—>q1—)...—)qn—)pn_l—)pn_Q._.—)po
with pg € F'. Then it is easy to see that the following is an accepting run of B on w:

Ginit — (90, P0) —= (q1,71) —= (g2,P2) - - - = (Gn1,Pn-1) —= (Gn> Gn)

Hence w € L(B).

Now let us show that L(B) C L'. Let w € L(B), and let w = ay, as, . ..a,. Let an accepting
run of B on w be:

Ginit — (20, P0) — (q1,P1) —= (g2,2) - - - = (Gn1, Pr1) ~—= (G, Pn)

with p, = ¢, (since the run must end in a final accepting state). Then it is easy to show
that the following is a run in A:

a1 a2 an an an, al
G —q ——q ... —— Gn ——= Pn-1 —— Pn-2--. — Do

Also, since giniz — (qo, Do), po € F, and hence the above is an accepting run in A on ww?.

Hence ww? € L(A) = L. Therefore w € L'.
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