
Problem Set 2Spring 10Due: Thursday Feb 11 in lass before the leture.Please follow the homework format guidelines posted on the lass web page:http://www.s.uiu.edu/lass/sp10/s373/1. NFA omprehension [Category: Comprehension, Points: 20℄Consider the following NFA M .A B EF
b

ǫb

a

a
ǫ(a) Give a regular expression that represents the language of M . Explain brie�y whyit is orret. (6 Points)(b) Reall the de�nition of an NFA aepting a string w (Sipser p. 54). Show formallythat M aepts the string w = abbab (6 Points)() Let Σ = {a, b}. Give the formal de�nition of the following NFA N (in tuplenotation). Make sure you desribe the transition funtion ompletely (for everystate and every letter). (8 Points)
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Solution:(a) The language of M is ab(a ∪ b)∗. Eah string in this language an be viewed as abfollowed by a sequene of substrings, either a's or b's. If this sequene starts froma substring of a's and ends with a substring of b's, then there is a state sequene
A

a

−→ B
b

−→ E
a

−→ . . .
a

−→ B
b

−→ . . .
b

−→ E → · · · → E. Other situations are easy to verifysimilarly.(b) Consider the sequene of states ABEFABE and a sequene of inputs abbǫǫab. Notethat abbab = abbǫǫab. The �rst state A is the start state and the last state E is anaept state. Moreover, it an be veri�ed that for eah two adjaent states s, s′ in thesequene, there is a transition from s to s′ reading the orresponding inputs. Then bythe de�nition of aeptane, M indeed aepts abbab.() Formally, N = (Q, Σ, δ,A,F), where
Q = {A, B, C, D, E};
Σ = {a, b};
δ is de�ned as follows:

δ a b ǫ
A {A, B, C} ∅ ∅

B ∅ {C} ∅

C {E} {D} ∅

D ∅ {A} {A}
E ∅ ∅ {B}

F = {C, E}.
2. DFA Transformation [Category: Comprehension, Points: 20℄Given a DFA M = (Q, Σ, δ, q0, F ), we de�ne T (M) to be a new DFA (Q′, Σ, δ′, q′0, F

′)suh that
∀q ∈ Q, Nq = {δ∗(q, ab) : a, b ∈ Σ}
Q′ = {(q, Nq) : q ∈ Q} ∪ {T}
F ′ = {(q, Nq) : q ∈ F}
q′0 = (q0, Nq0

)
∀q ∈ Q′, ∀a ∈ Σ,

δ′(q, a) =







T q = T
(

δ(p, a), Nδ(p,a)

)

∃p ∈ Q, q = (p, Np) and Nδ(p,a) ⊆ {δ(r, a) : r ∈ Np}
T otherwiseLet M be the following DFA. Draw T (M) (label the states).
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Solution:
(q, {p, q, r}) (p, {p, q, r})

(r, {r, p}) T

0

1
0

0, 1

1

0, 1

3. Language Projetion [Category: Proof, Points: 20℄Let's de�ne w ↓ Σ to be a word w′, suh that w′ is equal to w with all symbols not in
Σ removed. For example, abcdbdcad ↓ {a, b, c} = abcbca.Let L1 be a regular language over the alphabet Σ1 and L2 be a regular language overthe alphabet Σ2.Prove that L = {w ∈ (Σ1 ∪ Σ2)

∗ | (w ↓ Σ1) ∈ L1 ∧ (w ↓ Σ2) ∈ L2} is also regular.Note: Σ1 and Σ2 may have ommon symbols.Solution:Theorem 0.1 If language L over alphabet Σ is regular, then L′ = {w ∈ Σ∪Γ ‖ (w ↓ Σ) ∈ L}is also regular.Sine L is regular, there exists a DFA A = (Q, Σ, δ, q0, F ) that aepts L. Let's onstrut anew DFA A′ = (Q, Σ ∪ Γ, δ′, q0, F ) with
δ′(q, c) =

{

δ(q, c) : c ∈ Σ
q : c /∈ ΣThat is, we stay in the urrent state if the letter is not in the soure alphabet and moveaording to the δ-funtion of the soure DFA otherwise.To prove that this DFA aepts exatly L′ we need to prove that for any w ∈ Σ ∪ Γ, suhthat w = x1 . . . xn and w ↓ Σ = y1 . . . ym = y where m ≤ n, y1 = xi1 , . . . , ym = xim and

i1 < i2 < · · · < im: 3



(a) (w ↓ Σ) ∈ L ⇒ w ∈ L(A′)
(w ↓ Σ) ∈ L means that there exists a subsequene y in w suh that w ↓ Σ = y and
y ∈ L(A). By onstrution, A′ will aept any string w′ ∈ (Σ ∪ Γ) that ontains y as asubsequene. w ontains y as a subsequene, hene w ∈ L(A′).(b) w ∈ L(A′) ⇒ (w ↓ Σ) ∈ LSine w ∈ L(A′), there exists a trae r0, . . . , rn that leads from the start state to the �nalstate (q0 = r0 and rn ∈ F ). If for some symbol xi in w, xi /∈ Σ, then, by onstrution,
δ′(ri−1, xi) = ri = ri−1, that is, we stay in the same state. w ↓ Σ will remove all suhsymbols from w, but the trae will start and end in the same state as before. That meansthat on w ↓ Σ, A′ will remain in the �nal state, or δ′∗(q0, w) = δ′∗(q0, w ↓ Σ) = rn ∈ F .But sine all symbols in w ↓ Σ are in Σ, delta is de�ned on all of these symbols and isequal to delta′. This means that δ∗(q0, w ↓ Σ) = rn ∈ F , and hene (w ↓ Σ) ∈ L.By the above theorem L′

1 = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓ Σ1) ∈ L1} and L′

2 = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓
Σ2) ∈ L2} are regular.Sine L = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓ Σ1) ∈ L1 ∧ (w ↓ Σ1) ∈ L1} = L′

1 ∩ L′

2, L is regular as anintersetion of two regular languages.4. Language of a DFA [Category: Proof, Points: 20℄First have a look at the following laim and its formal proof. The proof uses indution.You may think that sine the laim is an easy fat you don't need suh a heavytehnique for proving it and in fat you are right! We ould avoid indution and builda muh easier proof for the laim. The reason that we have applied indution to provethis laim is to introdue this tehnique to you.Claim: The language of the DFA D below is A = {0n1x : x ∈ {0, 1}∗, n ≥ 0}.
q p1

0, 10

Proof: Let L(p) represent the set of all strings that if we feed them to the DFA D,then D will stop in state p. Similarly de�ne L(q) for state q. Note that sine p is theonly �nal state, we have L(D) = L(p). Instead of proving the Claim diretly, we willintrodue a stronger laim and we will prove that stronger laim using indution (andthis stronger laim is easier to attak using indution).The Stronger Claim: L(q) = C = {0n : n ≥ 0} and L(p) = A = {0n1x : x ∈
{0, 1}∗, n ≥ 0}.Note that the stronger laim asks for everything in the previous old laim and alsoasks for something more; this is why sometimes it is alled overloaded laim.4



Proof of the Stronger Claim: Let Bk represent the set of all binary strings oflength at most k. Using indution on k, we will prove that for every value of k, wehave L(q) ∩ Bk = C ∩ Bk and L(p) ∩ Bk = A ∩ Bk (as an easy exerise, please justifyfor yourself that if we prove this, then we have proved the stronger laim).Base ase: When k = 0. We have B0 = {ǫ}. When we feed ǫ to D, it stops in state
q and therefore L(q)∩B0 = {ǫ} and L(p)∩B0 = ∅. It is trivial to see that C∩B0 = {ǫ}and A ∩ B0 = ∅. Therefore we have L(q) ∩ B0 = C ∩ B0 and L(p) ∩ B0 = A ∩ B0.Indutive Step: Assume that for some k ≥ 0 we have L(q) ∩ Bk = C ∩ Bk and
L(p) ∩ Bk = A ∩ Bk, then we prove that L(q) ∩ Bk+1 = C ∩ Bk+1 and L(p) ∩ Bk+1 =
A ∩ Bk+1.First we prove L(q) ∩ Bk+1 = C ∩ Bk+1. Sine from indution hypothesis we know
L(q) ∩ Bk = C ∩ Bk, we just need to show that L(q) ∩ {0, 1}k+1 = C ∩ {0, 1}k+1(justify this for yourself). Let x ∈ L(q) ∩ {0, 1}k+1, write x = x′a where x′ ∈ Bk and
a = 0 or 1. Sine x ∈ L(q), we have q = δ∗(q, x) = δ(δ∗(q, x′), a). From this equationwe have δ∗(q, x′) = q and a = 0 (Why?). Sine δ∗(q, x′) = q by de�nition of L(q)we have x′ ∈ L(q), and sine x′ ∈ Bk we have x′ ∈ L(q) ∩ Bk. Sine by indutionhypothesis L(q) ∩ Bk = C ∩ Bk, we have x′ ∈ C ∩ Bk, and sine we know that x′is of length k, we have x′ = 0k. But this means that x = x′a = 0k0 = 0k+1. Sine
x was an arbitrary member of L(q) ∩ {0, 1}k+1, we have L(q) ∩ {0, 1}k+1 = {0k+1}.It is also trivial to see that C ∩ {0, 1}k+1 = {0k+1}, therefore we have proved that
L(q) ∩ {0, 1}k+1 = C ∩ {0, 1}k+1.Now we prove that L(p) ∩ Bk+1 = A ∩ Bk+1 in a similar way. Sine from indutionhypothesis we know L(p)∩Bk = A∩Bk, we just need to show that L(p)∩ {0, 1}k+1 =
A ∩ {0, 1}k+1 (again justify this for yourself). Let x ∈ L(p) ∩ {0, 1}k+1, write x = x′awhere x′ ∈ Bk and a = 0 or 1. Sine x ∈ L(p), we have p = δ∗(q, x) = δ(δ∗(q, x′), a).From this last equation we have that either δ∗(q, x′) = q and a = 1, or δ∗(q, x′) = pand a = 0 or 1 (why?).Case1: When δ∗(q, x′) = q and a = 1. From de�nition of L(q) we have that
x′ ∈ L(q) and sine |x′| = k we have x′ ∈ L(q) ∩ Bk. By the indution hypothesis
L(q)∩Bk = C ∩Bk and therefore x′ ∈ C ∩Bk. Therefore x′ = 0k and x = x′a = 0k1 ∈
A ∩ Bk+1.Case2: When δ∗(q, x′) = p and a = 0 or 1. By de�nition of L(p) we have
x′ ∈ L(p) and hene x′ ∈ L(p)∩Bk. By indution hypothesis we have L(p)∩Bk = A∩Bkand therefore x′ ∈ A ∩ Bk and hene x′ = 0n1y for some n ≥ 0 and y ∈ {0, 1}∗ (suhthat n + 1 + |y| = k). Hene x = x′a = 0n1ya ∈ A ∩ Bk+1.So up to this point we have proved that L(p) ∩ Bk+1 ⊆ A ∩ Bk+1. Now we prove that
A ∩ Bk+1 ⊆ L(p) ∩ Bk+1. Let x ∈ A ∩ Bk+1 we have x = 0n1y for some n ≥ 0 and
y ∈ {0, 1}∗ (suh that n + 1 + |y| = k + 1). Now:

δ∗(q, x) = δ∗(q, 0n1y) = δ∗(δ∗(q, 0n), 1y) = δ∗(q, 1y) = δ∗(δ(q, 1), y) = δ∗(p, y) = pTherefore x ∈ L(p) and sine already x ∈ Bk+1, we have x ∈ L(p) ∩ Bk+1, therefore
A ∩ Bk+1 ⊆ L(p) ∩ Bk+1. So we have proved that A ∩ Bk+1 = L(p) ∩ Bk+1 and theindution is omplete. � 5



Now prove formally that the language of the following DFA is:
{x ∈ {0, 1}∗ : x has odd number of 1's}

q p
1

1

00

Solution:Using the sample we saw in this problem, we laim that L(p) and L(q) (for the DFA above)are the following languages and we prove our laim using indution on the length of stringsin {0, 1}∗:
L(p) = {x ∈ {0, 1}∗ : x has odd number of 1's}
L(q) = {x ∈ {0, 1}∗ : x has even number of 1's}Again we note that sine L(p) is the language of our DFA, the �rst equality above is basiallywhat we are asked to prove and the seond equality is the extra fat that we want to provejust beause proving this stronger laim makes our indution easier!Let's rewrite our laim in a more onvenient way for applying indution,Claim : For any string x of length k ≥ 0, we have

x ∈ L(p) ⇐⇒ x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}
x ∈ L(q) ⇐⇒ x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}(Note that this laim is exatly our �rst two inequalities).Base Case: The laim is true for k = 0.proof: The only string of length 0 is ǫ. Looking at the DFA we observe that ǫ makes the DFAto �nish in state q. Additionally ǫ has even number of 1's. Hene both i� ( ⇐⇒ ) relationsare true for x = ǫ and therefore the laim is true for k = 0.Indution Hypothesis: If the laim is true for all x of length less than k, then it is alsotrue for all strings of length k.proof: Pik an arbitrary string x of length k ≥ 1. Write x = x′a where a ∈ {0, 1}.If x ∈ L(p), then we have two possible subases:- x′ ∈ L(p) and a = 0 : Sine |x′| = k − 1, by the indution hypothesis the laim istrue for x′ and therefore x′ has odd number of 1's. Hene x = x′0 has an odd number of 1′s.6



- x′ ∈ L(q) and a = 1 : Again, sine |x′| = k−1, by the indution hypothesis the laimis true for x′ and therefore x′ has even number of 1's. Hene x = x′1 has an odd number of
1′s.Therefore we have proved that for all strings of length k

x ∈ L(p) =⇒ x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}.Now we prove its reverse. Assume that x has odd number of 1′s. We have two possibilities:- a = 0 : Sine x = x′a, this means that x′ has odd number of 1's. Sine
|x′| = k − 1, the laim is true for x′ and hene x′ ∈ L(p). But this means that
δ∗(q, x) = δ∗(q, x′0) = δ(δ∗(q, x′), 0) = δ(p, 0) = p. Hene x ∈ L(p).- a = 1 : Sine x = x′a, this means that x′ has even number of 1's. Sine
|x′| = k − 1, the laim is true for x′ and hene x′ ∈ L(q). But this means that
δ∗(q, x) = δ∗(q, x′1) = δ(δ∗(q, x′), 1) = δ(q, 1) = p. Hene x ∈ L(p).Therefore we have proved that for all strings of length k

x ∈ L(p) ⇐= x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}and now we should onentrate on the seond i� ( ⇐⇒ ) ondition in the laim.If x ∈ L(q), then we have two possible subases:- x′ ∈ L(p) and a = 1 : Sine |x′| = k − 1, by the indution hypothesis the laim istrue for x′ and therefore x′ has odd number of 1's. Hene x = x′1 has an even number of
1′s. - x′ ∈ L(q) and a = 0 : Again, sine |x′| = k−1, by the indution hypothesis the laimis true for x′ and therefore x′ has even number of 1's. Hene x = x′0 has an even number of
1′s.Therefore we have proved that for all strings of length k

x ∈ L(q) =⇒ x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}.Now we prove its reverse. Assume that x has even number of 1′s. We have two possibilities:- a = 0 : Sine x = x′a, this means that x′ has even number of 1's. Sine
|x′| = k − 1, the laim is true for x′ and hene x′ ∈ L(q). But this means that
δ∗(q, x) = δ∗(q, x′0) = δ(δ∗(q, x′), 0) = δ(q, 0) = q. Hene x ∈ L(q).- a = 1 : Sine x = x′a, this means that x′ has odd number of 1's. Sine
|x′| = k − 1, the laim is true for x′ and hene x′ ∈ L(p). But this means that
δ∗(q, x) = δ∗(q, x′1) = δ(δ∗(q, x′), 1) = δ(p, 1) = q. Hene x ∈ L(q).Therefore we have proved that for all strings of length k

x ∈ L(q) ⇐= x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}whih ompletes the proof. 7



5. Extra Credit/Honors [Category: Proof, Points: 20℄Let L be a regular language. Show that L′ = {w : wwR ∈ L} is regular.Solution:Let L ⊆ Σ∗ be a regular language. Let A = (Q, Σ, δ, q0, F ) be a DFA aepting L. We willshow L′ = {w : wwR ∈ L} is regular by exhibiting an NFA B aepting L′.Intuitively, the NFA B for L′ will run two opies of the automaton A (similar to a produtonstrution), exept that the �rst opy will start from the initial state of A and read theinput w simulating A, while the seond opy will start from a �nal state of A and simulate
A bakwards reading wR. If the �rst opy and the seond opy both reah the same state,after reading w, then we would know that A after reading wwR will start from the initialstate and reah a �nal state. Hene B an aept w if the two opies reah the same state.In order for B to begin with a pair of states (q0, qf ) where qf ∈ F , we reate a new initialstate qinit from whih B an go to any state of the form (q0, qf) on reading ǫ.Here is the formal onstrution. Let B = ((Q×Q)∪{qinit}, Σ, δ′, qinit , F

′) be the NFA where:
• δ′(qinit , ǫ) = {(q0, qf) | qf ∈ F}

• For every a ∈ Σ, δ′(qinit , a) = ∅

• For every a ∈ Σ, q, q′ ∈ Q, δ′((q, q′), a) = {(p, p′) | p = δ(q, a), q′ ∈ δ(p′, a)}.
• For every q, q′ ∈ Q, δ′((q, q′), ǫ) = ∅

• F ′ = {(q, q) | q ∈ Q}We an now prove that B aepts L′.First, let us prove that L′ ⊆ L(B). Let w ∈ L′, i.e. let ww′ ∈ L = L(A). Let w = a1a2 . . . an,and let the (aepting) run in A on ww′ be:
q0

a1−→ q1
a2−→ . . .

an−→ qn
an−→ pn−1

an−1

−→ pn−2 . . .
a1−→ p0with p0 ∈ F . Then it is easy to see that the following is an aepting run of B on w:

qinit

ǫ
−→ (q0, p0)

a1−→ (q1, p1)
a2−→ (q2, p2) . . .

an−1

−→ (qn−1, pn−1)
an−→ (qn, qn)Hene w ∈ L(B).Now let us show that L(B) ⊆ L′. Let w ∈ L(B), and let w = a1, a2, . . . an. Let an aeptingrun of B on w be:

qinit

ǫ
−→ (q0, p0)

a1−→ (q1, p1)
a2−→ (q2, p2) . . .

an−1

−→ (qn−1, pn−1)
an−→ (qn, pn)with pn = qn (sine the run must end in a �nal aepting state). Then it is easy to showthat the following is a run in A:

q0
a1−→ q1

a2−→ q2 . . .
an−→ qn

an−→ pn−1
an−1

−→ pn−2 . . .
a1−→ p0Also, sine qinit

ǫ
−→ (q0, p0), p0 ∈ F , and hene the above is an aepting run in A on wwR.Hene wwR ∈ L(A) = L. Therefore w ∈ L′. 8
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