
Problem Set 2Spring 10Due: Thursday Feb 11 in 
lass before the le
ture.Please follow the homework format guidelines posted on the 
lass web page:http://www.
s.uiu
.edu/
lass/sp10/
s373/1. NFA 
omprehension [Category: Comprehension, Points: 20℄Consider the following NFA M .A B EF
b

ǫb

a

a
ǫ(a) Give a regular expression that represents the language of M . Explain brie�y whyit is 
orre
t. (6 Points)(b) Re
all the de�nition of an NFA a

epting a string w (Sipser p. 54). Show formallythat M a

epts the string w = abbab (6 Points)(
) Let Σ = {a, b}. Give the formal de�nition of the following NFA N (in tuplenotation). Make sure you des
ribe the transition fun
tion 
ompletely (for everystate and every letter). (8 Points)
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Solution:(a) The language of M is ab(a ∪ b)∗. Ea
h string in this language 
an be viewed as abfollowed by a sequen
e of substrings, either a's or b's. If this sequen
e starts froma substring of a's and ends with a substring of b's, then there is a state sequen
e
A

a

−→ B
b

−→ E
a

−→ . . .
a

−→ B
b

−→ . . .
b

−→ E → · · · → E. Other situations are easy to verifysimilarly.(b) Consider the sequen
e of states ABEFABE and a sequen
e of inputs abbǫǫab. Notethat abbab = abbǫǫab. The �rst state A is the start state and the last state E is ana

ept state. Moreover, it 
an be veri�ed that for ea
h two adja
ent states s, s′ in thesequen
e, there is a transition from s to s′ reading the 
orresponding inputs. Then bythe de�nition of a

eptan
e, M indeed a

epts abbab.(
) Formally, N = (Q, Σ, δ,A,F), where
Q = {A, B, C, D, E};
Σ = {a, b};
δ is de�ned as follows:

δ a b ǫ
A {A, B, C} ∅ ∅

B ∅ {C} ∅

C {E} {D} ∅

D ∅ {A} {A}
E ∅ ∅ {B}

F = {C, E}.
2. DFA Transformation [Category: Comprehension, Points: 20℄Given a DFA M = (Q, Σ, δ, q0, F ), we de�ne T (M) to be a new DFA (Q′, Σ, δ′, q′0, F

′)su
h that
∀q ∈ Q, Nq = {δ∗(q, ab) : a, b ∈ Σ}
Q′ = {(q, Nq) : q ∈ Q} ∪ {T}
F ′ = {(q, Nq) : q ∈ F}
q′0 = (q0, Nq0

)
∀q ∈ Q′, ∀a ∈ Σ,

δ′(q, a) =







T q = T
(

δ(p, a), Nδ(p,a)

)

∃p ∈ Q, q = (p, Np) and Nδ(p,a) ⊆ {δ(r, a) : r ∈ Np}
T otherwiseLet M be the following DFA. Draw T (M) (label the states).
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Solution:
(q, {p, q, r}) (p, {p, q, r})

(r, {r, p}) T

0

1
0

0, 1

1

0, 1

3. Language Proje
tion [Category: Proof, Points: 20℄Let's de�ne w ↓ Σ to be a word w′, su
h that w′ is equal to w with all symbols not in
Σ removed. For example, abcdbdcad ↓ {a, b, c} = abcbca.Let L1 be a regular language over the alphabet Σ1 and L2 be a regular language overthe alphabet Σ2.Prove that L = {w ∈ (Σ1 ∪ Σ2)

∗ | (w ↓ Σ1) ∈ L1 ∧ (w ↓ Σ2) ∈ L2} is also regular.Note: Σ1 and Σ2 may have 
ommon symbols.Solution:Theorem 0.1 If language L over alphabet Σ is regular, then L′ = {w ∈ Σ∪Γ ‖ (w ↓ Σ) ∈ L}is also regular.Sin
e L is regular, there exists a DFA A = (Q, Σ, δ, q0, F ) that a

epts L. Let's 
onstru
t anew DFA A′ = (Q, Σ ∪ Γ, δ′, q0, F ) with
δ′(q, c) =

{

δ(q, c) : c ∈ Σ
q : c /∈ ΣThat is, we stay in the 
urrent state if the letter is not in the sour
e alphabet and movea

ording to the δ-fun
tion of the sour
e DFA otherwise.To prove that this DFA a

epts exa
tly L′ we need to prove that for any w ∈ Σ ∪ Γ, su
hthat w = x1 . . . xn and w ↓ Σ = y1 . . . ym = y where m ≤ n, y1 = xi1 , . . . , ym = xim and

i1 < i2 < · · · < im: 3



(a) (w ↓ Σ) ∈ L ⇒ w ∈ L(A′)
(w ↓ Σ) ∈ L means that there exists a subsequen
e y in w su
h that w ↓ Σ = y and
y ∈ L(A). By 
onstru
tion, A′ will a

ept any string w′ ∈ (Σ ∪ Γ) that 
ontains y as asubsequen
e. w 
ontains y as a subsequen
e, hen
e w ∈ L(A′).(b) w ∈ L(A′) ⇒ (w ↓ Σ) ∈ LSin
e w ∈ L(A′), there exists a tra
e r0, . . . , rn that leads from the start state to the �nalstate (q0 = r0 and rn ∈ F ). If for some symbol xi in w, xi /∈ Σ, then, by 
onstru
tion,
δ′(ri−1, xi) = ri = ri−1, that is, we stay in the same state. w ↓ Σ will remove all su
hsymbols from w, but the tra
e will start and end in the same state as before. That meansthat on w ↓ Σ, A′ will remain in the �nal state, or δ′∗(q0, w) = δ′∗(q0, w ↓ Σ) = rn ∈ F .But sin
e all symbols in w ↓ Σ are in Σ, delta is de�ned on all of these symbols and isequal to delta′. This means that δ∗(q0, w ↓ Σ) = rn ∈ F , and hen
e (w ↓ Σ) ∈ L.By the above theorem L′

1 = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓ Σ1) ∈ L1} and L′

2 = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓
Σ2) ∈ L2} are regular.Sin
e L = {w ∈ Σ1 ∪ Σ2 ‖ (w ↓ Σ1) ∈ L1 ∧ (w ↓ Σ1) ∈ L1} = L′

1 ∩ L′

2, L is regular as aninterse
tion of two regular languages.4. Language of a DFA [Category: Proof, Points: 20℄First have a look at the following 
laim and its formal proof. The proof uses indu
tion.You may think that sin
e the 
laim is an easy fa
t you don't need su
h a heavyte
hnique for proving it and in fa
t you are right! We 
ould avoid indu
tion and builda mu
h easier proof for the 
laim. The reason that we have applied indu
tion to provethis 
laim is to introdu
e this te
hnique to you.Claim: The language of the DFA D below is A = {0n1x : x ∈ {0, 1}∗, n ≥ 0}.
q p1

0, 10

Proof: Let L(p) represent the set of all strings that if we feed them to the DFA D,then D will stop in state p. Similarly de�ne L(q) for state q. Note that sin
e p is theonly �nal state, we have L(D) = L(p). Instead of proving the Claim dire
tly, we willintrodu
e a stronger 
laim and we will prove that stronger 
laim using indu
tion (andthis stronger 
laim is easier to atta
k using indu
tion).The Stronger Claim: L(q) = C = {0n : n ≥ 0} and L(p) = A = {0n1x : x ∈
{0, 1}∗, n ≥ 0}.Note that the stronger 
laim asks for everything in the previous old 
laim and alsoasks for something more; this is why sometimes it is 
alled overloaded 
laim.4



Proof of the Stronger Claim: Let Bk represent the set of all binary strings oflength at most k. Using indu
tion on k, we will prove that for every value of k, wehave L(q) ∩ Bk = C ∩ Bk and L(p) ∩ Bk = A ∩ Bk (as an easy exer
ise, please justifyfor yourself that if we prove this, then we have proved the stronger 
laim).Base 
ase: When k = 0. We have B0 = {ǫ}. When we feed ǫ to D, it stops in state
q and therefore L(q)∩B0 = {ǫ} and L(p)∩B0 = ∅. It is trivial to see that C∩B0 = {ǫ}and A ∩ B0 = ∅. Therefore we have L(q) ∩ B0 = C ∩ B0 and L(p) ∩ B0 = A ∩ B0.Indu
tive Step: Assume that for some k ≥ 0 we have L(q) ∩ Bk = C ∩ Bk and
L(p) ∩ Bk = A ∩ Bk, then we prove that L(q) ∩ Bk+1 = C ∩ Bk+1 and L(p) ∩ Bk+1 =
A ∩ Bk+1.First we prove L(q) ∩ Bk+1 = C ∩ Bk+1. Sin
e from indu
tion hypothesis we know
L(q) ∩ Bk = C ∩ Bk, we just need to show that L(q) ∩ {0, 1}k+1 = C ∩ {0, 1}k+1(justify this for yourself). Let x ∈ L(q) ∩ {0, 1}k+1, write x = x′a where x′ ∈ Bk and
a = 0 or 1. Sin
e x ∈ L(q), we have q = δ∗(q, x) = δ(δ∗(q, x′), a). From this equationwe have δ∗(q, x′) = q and a = 0 (Why?). Sin
e δ∗(q, x′) = q by de�nition of L(q)we have x′ ∈ L(q), and sin
e x′ ∈ Bk we have x′ ∈ L(q) ∩ Bk. Sin
e by indu
tionhypothesis L(q) ∩ Bk = C ∩ Bk, we have x′ ∈ C ∩ Bk, and sin
e we know that x′is of length k, we have x′ = 0k. But this means that x = x′a = 0k0 = 0k+1. Sin
e
x was an arbitrary member of L(q) ∩ {0, 1}k+1, we have L(q) ∩ {0, 1}k+1 = {0k+1}.It is also trivial to see that C ∩ {0, 1}k+1 = {0k+1}, therefore we have proved that
L(q) ∩ {0, 1}k+1 = C ∩ {0, 1}k+1.Now we prove that L(p) ∩ Bk+1 = A ∩ Bk+1 in a similar way. Sin
e from indu
tionhypothesis we know L(p)∩Bk = A∩Bk, we just need to show that L(p)∩ {0, 1}k+1 =
A ∩ {0, 1}k+1 (again justify this for yourself). Let x ∈ L(p) ∩ {0, 1}k+1, write x = x′awhere x′ ∈ Bk and a = 0 or 1. Sin
e x ∈ L(p), we have p = δ∗(q, x) = δ(δ∗(q, x′), a).From this last equation we have that either δ∗(q, x′) = q and a = 1, or δ∗(q, x′) = pand a = 0 or 1 (why?).Case1: When δ∗(q, x′) = q and a = 1. From de�nition of L(q) we have that
x′ ∈ L(q) and sin
e |x′| = k we have x′ ∈ L(q) ∩ Bk. By the indu
tion hypothesis
L(q)∩Bk = C ∩Bk and therefore x′ ∈ C ∩Bk. Therefore x′ = 0k and x = x′a = 0k1 ∈
A ∩ Bk+1.Case2: When δ∗(q, x′) = p and a = 0 or 1. By de�nition of L(p) we have
x′ ∈ L(p) and hen
e x′ ∈ L(p)∩Bk. By indu
tion hypothesis we have L(p)∩Bk = A∩Bkand therefore x′ ∈ A ∩ Bk and hen
e x′ = 0n1y for some n ≥ 0 and y ∈ {0, 1}∗ (su
hthat n + 1 + |y| = k). Hen
e x = x′a = 0n1ya ∈ A ∩ Bk+1.So up to this point we have proved that L(p) ∩ Bk+1 ⊆ A ∩ Bk+1. Now we prove that
A ∩ Bk+1 ⊆ L(p) ∩ Bk+1. Let x ∈ A ∩ Bk+1 we have x = 0n1y for some n ≥ 0 and
y ∈ {0, 1}∗ (su
h that n + 1 + |y| = k + 1). Now:

δ∗(q, x) = δ∗(q, 0n1y) = δ∗(δ∗(q, 0n), 1y) = δ∗(q, 1y) = δ∗(δ(q, 1), y) = δ∗(p, y) = pTherefore x ∈ L(p) and sin
e already x ∈ Bk+1, we have x ∈ L(p) ∩ Bk+1, therefore
A ∩ Bk+1 ⊆ L(p) ∩ Bk+1. So we have proved that A ∩ Bk+1 = L(p) ∩ Bk+1 and theindu
tion is 
omplete. � 5



Now prove formally that the language of the following DFA is:
{x ∈ {0, 1}∗ : x has odd number of 1's}

q p
1

1

00

Solution:Using the sample we saw in this problem, we 
laim that L(p) and L(q) (for the DFA above)are the following languages and we prove our 
laim using indu
tion on the length of stringsin {0, 1}∗:
L(p) = {x ∈ {0, 1}∗ : x has odd number of 1's}
L(q) = {x ∈ {0, 1}∗ : x has even number of 1's}Again we note that sin
e L(p) is the language of our DFA, the �rst equality above is basi
allywhat we are asked to prove and the se
ond equality is the extra fa
t that we want to provejust be
ause proving this stronger 
laim makes our indu
tion easier!Let's rewrite our 
laim in a more 
onvenient way for applying indu
tion,Claim : For any string x of length k ≥ 0, we have

x ∈ L(p) ⇐⇒ x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}
x ∈ L(q) ⇐⇒ x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}(Note that this 
laim is exa
tly our �rst two inequalities).Base Case: The 
laim is true for k = 0.proof: The only string of length 0 is ǫ. Looking at the DFA we observe that ǫ makes the DFAto �nish in state q. Additionally ǫ has even number of 1's. Hen
e both i� ( ⇐⇒ ) relationsare true for x = ǫ and therefore the 
laim is true for k = 0.Indu
tion Hypothesis: If the 
laim is true for all x of length less than k, then it is alsotrue for all strings of length k.proof: Pi
k an arbitrary string x of length k ≥ 1. Write x = x′a where a ∈ {0, 1}.If x ∈ L(p), then we have two possible sub
ases:- x′ ∈ L(p) and a = 0 : Sin
e |x′| = k − 1, by the indu
tion hypothesis the 
laim istrue for x′ and therefore x′ has odd number of 1's. Hen
e x = x′0 has an odd number of 1′s.6



- x′ ∈ L(q) and a = 1 : Again, sin
e |x′| = k−1, by the indu
tion hypothesis the 
laimis true for x′ and therefore x′ has even number of 1's. Hen
e x = x′1 has an odd number of
1′s.Therefore we have proved that for all strings of length k

x ∈ L(p) =⇒ x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}.Now we prove its reverse. Assume that x has odd number of 1′s. We have two possibilities:- a = 0 : Sin
e x = x′a, this means that x′ has odd number of 1's. Sin
e
|x′| = k − 1, the 
laim is true for x′ and hen
e x′ ∈ L(p). But this means that
δ∗(q, x) = δ∗(q, x′0) = δ(δ∗(q, x′), 0) = δ(p, 0) = p. Hen
e x ∈ L(p).- a = 1 : Sin
e x = x′a, this means that x′ has even number of 1's. Sin
e
|x′| = k − 1, the 
laim is true for x′ and hen
e x′ ∈ L(q). But this means that
δ∗(q, x) = δ∗(q, x′1) = δ(δ∗(q, x′), 1) = δ(q, 1) = p. Hen
e x ∈ L(p).Therefore we have proved that for all strings of length k

x ∈ L(p) ⇐= x ∈ {x ∈ {0, 1}∗ : x has odd number of 1's}and now we should 
on
entrate on the se
ond i� ( ⇐⇒ ) 
ondition in the 
laim.If x ∈ L(q), then we have two possible sub
ases:- x′ ∈ L(p) and a = 1 : Sin
e |x′| = k − 1, by the indu
tion hypothesis the 
laim istrue for x′ and therefore x′ has odd number of 1's. Hen
e x = x′1 has an even number of
1′s. - x′ ∈ L(q) and a = 0 : Again, sin
e |x′| = k−1, by the indu
tion hypothesis the 
laimis true for x′ and therefore x′ has even number of 1's. Hen
e x = x′0 has an even number of
1′s.Therefore we have proved that for all strings of length k

x ∈ L(q) =⇒ x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}.Now we prove its reverse. Assume that x has even number of 1′s. We have two possibilities:- a = 0 : Sin
e x = x′a, this means that x′ has even number of 1's. Sin
e
|x′| = k − 1, the 
laim is true for x′ and hen
e x′ ∈ L(q). But this means that
δ∗(q, x) = δ∗(q, x′0) = δ(δ∗(q, x′), 0) = δ(q, 0) = q. Hen
e x ∈ L(q).- a = 1 : Sin
e x = x′a, this means that x′ has odd number of 1's. Sin
e
|x′| = k − 1, the 
laim is true for x′ and hen
e x′ ∈ L(p). But this means that
δ∗(q, x) = δ∗(q, x′1) = δ(δ∗(q, x′), 1) = δ(p, 1) = q. Hen
e x ∈ L(q).Therefore we have proved that for all strings of length k

x ∈ L(q) ⇐= x ∈ {x ∈ {0, 1}∗ : x has even number of 1's}whi
h 
ompletes the proof. 7



5. Extra Credit/Honors [Category: Proof, Points: 20℄Let L be a regular language. Show that L′ = {w : wwR ∈ L} is regular.Solution:Let L ⊆ Σ∗ be a regular language. Let A = (Q, Σ, δ, q0, F ) be a DFA a

epting L. We willshow L′ = {w : wwR ∈ L} is regular by exhibiting an NFA B a

epting L′.Intuitively, the NFA B for L′ will run two 
opies of the automaton A (similar to a produ
t
onstru
tion), ex
ept that the �rst 
opy will start from the initial state of A and read theinput w simulating A, while the se
ond 
opy will start from a �nal state of A and simulate
A ba
kwards reading wR. If the �rst 
opy and the se
ond 
opy both rea
h the same state,after reading w, then we would know that A after reading wwR will start from the initialstate and rea
h a �nal state. Hen
e B 
an a

ept w if the two 
opies rea
h the same state.In order for B to begin with a pair of states (q0, qf ) where qf ∈ F , we 
reate a new initialstate qinit from whi
h B 
an go to any state of the form (q0, qf) on reading ǫ.Here is the formal 
onstru
tion. Let B = ((Q×Q)∪{qinit}, Σ, δ′, qinit , F

′) be the NFA where:
• δ′(qinit , ǫ) = {(q0, qf) | qf ∈ F}

• For every a ∈ Σ, δ′(qinit , a) = ∅

• For every a ∈ Σ, q, q′ ∈ Q, δ′((q, q′), a) = {(p, p′) | p = δ(q, a), q′ ∈ δ(p′, a)}.
• For every q, q′ ∈ Q, δ′((q, q′), ǫ) = ∅

• F ′ = {(q, q) | q ∈ Q}We 
an now prove that B a

epts L′.First, let us prove that L′ ⊆ L(B). Let w ∈ L′, i.e. let ww′ ∈ L = L(A). Let w = a1a2 . . . an,and let the (a

epting) run in A on ww′ be:
q0

a1−→ q1
a2−→ . . .

an−→ qn
an−→ pn−1

an−1

−→ pn−2 . . .
a1−→ p0with p0 ∈ F . Then it is easy to see that the following is an a

epting run of B on w:

qinit

ǫ
−→ (q0, p0)

a1−→ (q1, p1)
a2−→ (q2, p2) . . .

an−1

−→ (qn−1, pn−1)
an−→ (qn, qn)Hen
e w ∈ L(B).Now let us show that L(B) ⊆ L′. Let w ∈ L(B), and let w = a1, a2, . . . an. Let an a

eptingrun of B on w be:

qinit

ǫ
−→ (q0, p0)

a1−→ (q1, p1)
a2−→ (q2, p2) . . .

an−1

−→ (qn−1, pn−1)
an−→ (qn, pn)with pn = qn (sin
e the run must end in a �nal a

epting state). Then it is easy to showthat the following is a run in A:

q0
a1−→ q1

a2−→ q2 . . .
an−→ qn

an−→ pn−1
an−1

−→ pn−2 . . .
a1−→ p0Also, sin
e qinit

ǫ
−→ (q0, p0), p0 ∈ F , and hen
e the above is an a

epting run in A on wwR.Hen
e wwR ∈ L(A) = L. Therefore w ∈ L′. 8
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