
Problem Set 0
Spring 2010

Due: Thursday Jan 28, 2:00pm, in class before the lecture.
Please follow the homework format guidelines posted on the class web page:

http://www.cs.uiuc.edu/class/sp10/cs373/

1. [Category: Notation, Points: 20]

Answer each of the following my marking each with �true�, �false�, or �wrong nota-
tion.� Follow the notations in Sipser. {. . . } is used to represent sets and not multisets
or anything else.

D1) {a, b, c} ∩ {d, e} = {}
D2) {a, b, c} ∩ {d, e} = {∅}
D3) {a, b, c} ∪ {d, a, e} = {a, b, c, d, a, e}
D4) {a, b, c} ∪ {d, a, e} = {a, b, c, d, e}
D5) {a, b, c} \ {a, d} = {b, c}
D6) ∅ ∈ {∅, a, b, c}
D7) ∅ ⊆ {∅, a, b, c}
D8) ∅ ∈ ∅
D9) a ⊆ {∅, a, b, c}
D10) {a, c}+ {c, b} = {a, b, c}
D11) {a, b} − {b} = {a}
D12) {a, a} = {a}
D13) {{a}, {a}} = {a, a}
D14) a ∈ {a, {a}, {{a}}}
D15) {a} ∈ {a, {a}, {{a}}}
D16) {{{a}}} ⊆ {a, {a}, {{a}}}
D17) {∅} = {{}}
D18) {a, b} × {c, d} = {(a, c), (b, d)}
D19) {a, b} × {c, d} = {c, d} × {a, b}
D20) |{a, b} × {a, b}| = 3

Solution:

D1) {a, b, c} ∩ {d, e} = {} true
D2) {a, b, c} ∩ {d, e} = {∅} false

1

http://www.cs.uiuc.edu/class/sp10/cs373/


D3) {a, b, c} ∪ {d, a, e} = {a, b, c, d, a, e} true
D4) {a, b, c} ∪ {d, a, e} = {a, b, c, d, e} true
D5) {a, b, c} \ {a, d} = {b, c} true
D6) ∅ ∈ {∅, a, b, c} true
D7) ∅ ⊆ {∅, a, b, c} true
D8) ∅ ∈ ∅ false

D9) a ⊆ {∅, a, b, c} wrong notation

D10) {a, c}+ {c, b} = {a, b, c} wrong notation

D11) {a, b} − {b} = {a} wrong notation (but we will also accept "true")

D12) {a, a} = {a} true
D13) {{a}, {a}} = {a, a} false
D14) a ∈ {a, {a}, {{a}}} true
D15) {a} ∈ {a, {a}, {{a}}} true
D16) {{{a}}} ⊆ {a, {a}, {{a}}} true
D17) {∅} = {{}} true
D18) {a, b} × {c, d} = {(a, c), (b, d)} false
D19) {a, b} × {c, d} = {c, d} × {a, b} false
D20) |{a, b} × {a, b}| = 3 false

2. [Category: Proof, Points: 16]

Professor Moriarty claims that he has a way of describing every real number between
0 and 1 using an English sentence (of �nite length), i.e. for every real number r, there
is an English sentence s that precisely describes r.

Prove that Professor Moriarty is wrong.

Note: Assume that a real number between 0 and 1 is of the form 0.a1a2a3 . . ., where
each ai ∈ {0, 1, . . . 9}, i.e. is an in�nite set of decimal points. This is not quite true,

as 0.09999999 . . . is actually the same as 0.10000 . . ., but ignore this subtlely for this

question.

Solution:

The set of all �nite English sentences, is after all a subset of strings over the English alphabet,
and is hence countable.

The set of all real numbers is the set of all in�nite sequences over {0, 1}, which is uncountable.

If there was a description of all real numbers using �nite English sentences, then we can
build a one-to-one correspondence between a subset of English sentences to the set of all
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reals (associate each real with the lexicographically smallest English sentence that describes
it).

If a set A is in�nite and countable, and B is in�nite and uncountable, then there cannot be
a 1-1 correspondence between them (if there was a 1-1 correspondence, say f : A→ B, then
since A is countable, there is another 1-1 correspondence g : N → B, and the composition
of these f ◦ g : N→ B would be a 1-1 correspondence, which contradicts the fact that B is
not countable).

Hence there cannot be a 1-1 correspondence between between a subset of English strings
(which is countable) to the set of all reals (which is uncountable),

3. [Category: Proof, Points: 16]

Prove that in a class with at least two students, there exist at least two students who
have the same number of friends (assuming that friendship is a symmetric relation: if
Jane is a friend of Venkatachalam, Venkatachalam is a friend of Jane too).

Solution:

Assume the class has n students. Each student can have x friends where x ∈ {0, 1, · · · , n−1}.
If no two students have the same number of friends, then for each x ∈ {0, · · · , n− 1} there
is exactly one student in class with x friends. But if there is a student with n− 1 friends in
class, then no student can have 0 friends; a contradiction.

4. [Category: Proof, Points: 16]

A graph is said to be non-isolating, if every vertex has at least one edge incident on it.

John guesses the following statement and proves it using induction.
Guess: Every non-isolating graph is connected.
proof: We use induction on the number of vertices of the graph to prove our statement.

Base-case: There is no non-isolating graph with one vertex. Moreover every 2-vertex
non-isolating graph is trivially connected.

Induction step: Assume the claim is true for all graphs with k vertices. Let G be a
k-vertex non-isolating graph. By induction hypothesis G is connected. Now consider
adding a new vertex u to G to give a non-isolating graph G′ with k+ 1 vertices. Since
G′ is non-isolating, u must be connected to some other vertex of G′, let's say it's
connected to v. This implies that the k+ 1 vertex graph G′ is connected (since we can
reach from u to any other vertex x by going to v �rst and -since G is connected and
both v and x are in G- then getting from v to x) and we are done.

First show that John's guess is incorrect. Second identify clearly what is wrong with
this inductive proof.
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Solution:

The guess is incorrect since for example the following graph is non-isolating and is not
connected.

The �aw in the induction is because every possible non-isolating k + 1-vertex graph cannot
be obtained by adding an additional vertex to a non-isolating k-vertex graph (For example
the graph shown above). Therefore the mentioned proof just proves that for the particular
graphs that could be obtained in that way the claim is true (but not for all the non-isolating
graphs).

In general, this is a common mistake many people make. Let us assume that we are proving
a property:
P (n): Every graph of n vertices that satis�es the condition α, must satisfy β, for all n ∈ N.

In (strong) induction, in the inductive step, we assume that ∀i ≤ n.P (n) holds, and we need
to prove P (n+ 1) holds. Then, in order to prove P (n+ 1), we must show �every graph with
n + 1 vertices that satis�es α also satis�es β.� To do this we must consider an arbitrary

graph G with n+1 vertices, and using the assumption ∀i ≤ n.P (n), prove that the property
holds for the graph G. In many proofs, we can break down the graph G to a smaller graph,
use the induction hypothesis on the smaller graph, and show that the graph G satis�es the
property. But we should not take a graph of n vertices (that satis�es α) and add a vertex
to it; that is wrong because we do not know if all graphs with n + 1 vertices that satisfy α
can be obtained from an n-vertex graph that satis�es α, using such an operation.

5. [Category: Proof, Points: 16]

12 players took part in a tennis tournament. Each pair of players played with each
other exactly one time. There's no player who lost all his games (and there's no tie in
tennis). Prove that there exist three players A, B and C, such that A defeated B, B
defeated C and C defeated A.

Solution:

We will prove the existence of three players satisfying the condition, for any number of total
players r, where r ≥ 3 (instead of proving only for 12).

The �rst proof is by induction on the number of players.

Base: For r = 3, by checking all possible tournament results we can �nd out that the only
possible option is A defeated B, B defeated C and C defeated A.

Inductive hypothesis: If any set of k players take part in the tournament (where 3 ≤ k < r,
r > 3), there exist three players A, B and C, such that A defeated B, B defeated C and C
defeated A.
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Inductive step: Consider a tournament with r players. Consider some player B. Let
A1, . . . , An be the players who defeated B and C1, . . . , Cm be the players who lost to B.
There are two possible cases:

(a) There exists a player Ci who lost to all other players Cj, j 6= i. Since he also lost to B,
there exists a player At who lost to Ci, otherwise Ci would have lost every game. Then
the desired triple is At, B, Ci.

(b) No such Ci exists. By inductive hypothesis, there exists a desired triple among
C1, . . . , Cm.

Alternative proof:
Assume there are n players, n ≥ 3. Now, let us draw a graph with vertices as players, and
directed edges p→ q if p beats q in the tournament. Note that for every player p there is a
player q such that p→ q (since no player loses all games).

I can pick an arbitrary player p1, take a successor of p1, p1 → p2, take a successor p3 of p2,
p1 → p2 → p3, and build a longer and longer path until a vertex repeats. Hence there is
always a directed cycle in this graph.

Now consider a directed cycle of the smallest length. I claim it has to be of length 3. It
can't be of length 2 (since if p1 beats p2, then p2 didn't beat p1). Assume the smallest length
cycle is of some length n, where n > 3. Let such a cycle be p1 → p2 → p3 → . . .→ pn → p1,
where n > 3. Then consider the game between p1 and p3, which someone would have won,
giving an edge from p1 to p3, or from p3 to p1. If p3 → p1, then p1 → p2 → p3 → p1 is a
cycle of length 3, a contradiction. So p1 → p3 must hold. But then p1 → p3 → . . . pn → p1

is a cycle of length n− 1, again a contradiction. Hence the shortest cycle is of length 3, and
we are done.

6. [Category: Proof, Points: 6+10]

Here is a theorem and a formal proof of it.

Theorem: Let X and Y be two sets. Let X ⊆ X ∩ Y . Then X ⊆ Y .

Proof: Let X ⊆ X ∩ Y . In order to show X ⊆ Y , we will show that if s ∈ X, then
s ∈ Y . Let s ∈ X. Since X ⊆ X ∩ Y , s ∈ X ∩ Y . Therefore s ∈ Y .
In general, if you want to prove X = Y , it's good to break it up into two proofs: i.e.,
prove X ⊆ Y and prove Y ⊆ X.

Now, prove the following theorems formally (using a similar style and level of detail as
the proof above).

(a) Theorem: Let X and Y be two sets, and let X ∪ Y = X ∩ Y . Then X = Y .

(b) Theorem: Let f : N → N be a function such that for every x, y ∈ N, if x < y,
then f(x) ≥ f(y). Then there exists s, t ∈ N such that s 6= t and f(s) = f(t).

Write formal proofs. Don't wave hands. Don't say things like �it's obvious that�, etc.

If you are assuming a well known property, then state that property clearly.
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Solution:

(a) Let X ∪ Y = X ∩ Y . We will prove X = Y by proving X ⊆ Y and proving Y ⊆ X.

To prove X ⊆ Y . Let s ∈ X. Then, since X ∪ Y = X ∩ Y , and s ∈ X ∪ Y , s ∈ X ∩ Y ,
Hence s ∈ Y . So X ⊆ Y .

Now let's prove Y ⊆ X. Let s ∈ Y . Then, since X ∪Y = X ∩Y , and s ∈ X ∪Y , s ∈ X ∩Y ,
Hence s ∈ X. So Y ⊆ X.

Hence X = Y .

(b)

Let S be the range of f . I.e. let S = {n | ∃m ∈ N, f(m) = n}. Since S is a set of natural
numbers, there must be a least number, say n0 in S.

Now, let m0 ∈ N be a number such that f(m0) = n0. Consider f(m0 + 1), and let it be x.
We claim x = n0.

First, since m0 < m0 +1, f(m0) ≥ f(m0 +1), i.e. n0 ≥ x. Since x ∈ S (as x is in the range),
and n0 is the least number in S, n0 ≤ x. Hence n0 = x.

So we have proved that there exists two distinct numbers, namely m0 and m0 + 1, such that
f(m0) = f(m0 + 1).
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