
� CS 373: Theory of Computation� Madhusudan ParthasarathyLeture 17: Redutions18 Marh 2010
1 What is a redution?Last leture we proved that ATM is undeidable. Now that we have one example of anundeidable language, we an use it to prove other problems to be undeidable.Meta de�nition: Problem A redues to problem B, if given a solution to B, then it impliesa solution for A. Namely, we an solve B then we an solve A. We will denote this by A =⇒ B.An orale ORAC for a language L is a funtion that reeives as a word w, and itreturns true if and only if w ∈ L. An orale an be thought of as a blak box that ansolve membership in a language without requiring us to onsider the question of whether
L is omputable or not. Alternatively, you an think about an orale as a provided libraryfuntion that omputes whatever it requires to do, and it always return (i.e., it never goesinto an in�nite loop).Intuitively, a TM deider for a language L is the ultimate orale. Not only it an deideif a word is in L, but furthermore, it an be implemented as a TM that always stops.In the ontext of showing languages are undeidable, the following more spei� de�nitionwould be useful.De�nition 1.1 A language X redues to a language Y , if one an onstrut a TM deiderfor X using a given orale ORACY for Y .We will denote this fat by X =⇒ Y .In partiular, if X redues to Y then given a deider for the language Y (i.e., an oralefor Y), then there is a program that an deide X. So Y must be at least as �hard� as X. Inpartiular, if X is undeidable, then it must be that Y is also undeidable.Warning. It is easy to get onfused about whih of the two problems �redues� to theother. Do not get hung up on this. Instead, onentrate on getting the right outline for yourproofs (proving them in the right diretion, of ourse).Redution proof tehnique. Formally, onsider a problem B that we would like to proveis undeidable. We will prove this via redution, that is a proof by ontradition, similar inoutline to the ones we have seen for regular and ontext-free languages. You assume thatyour new language L (i.e., the language of B) is deided by some TM M . Then you use M asa omponent to reate a deider for some language known to be undeidable (typially ATM).1

This is would imply that we have a deider for A (i.e., ATM). But this is a ontraditionsine A (i.e., ATM) is not deidable. As suh, we must have been wrong in assuming that Lwas deidable.We will onentrate on using redutions to show that problems are undeidable. However,the tehnique is atually very general. Similar methods an be used to show problems to benot TM reognizable. We have used similar proofs to show languages to be not regular ornot ontext-free. And redutions will be used in CS 473 to show that ertain problems are�NP omplete�, i.e. these problems (probably) require exponential time to solve.1.1 Formal argumentLemma 1.2 Let X and Y be two languages, and assume that X =⇒ Y . If Y is TMdeidable then X is TM deidable.Proof: Let T be the TM deider for Y . Sine X redues to Y , it follows that there isa proedure TX|Y (i.e., TM deider) for X that uses an orale for Y as a subroutine. Wereplae the alls to this orale in TX|Y by alls to T. The resulting TM TX is a TM deiderand its language is X. Thus X is TM deidable.The ounter-positive of this lemma, is what we will use.Lemma 1.3 Let X and Y be two languages, and assume that X =⇒ Y . If X is TMundeidable then Y is TM undeidable.2 HaltingWe remind the reader that ATM is the language
ATM =

{

〈M, w〉
∣

∣

∣
M is a TM and M aepts w

}

.This is the problem that we showed (last lass) to be undeidable (via diagonalization).Right now, it is the only problem we o�ially know to be undeidable.Consider the following slight modi�ation, whih is all the pairs 〈M, w〉 suh that Mhalts on w. Formally,
AHalt =

{

〈M, w〉
∣

∣

∣
M is a TM and M stops on w

}

.Intuitively, this is very similar to ATM. The big obstale to building a deider for ATMwas deiding whether a simulation would ever halt or not.To show formally that AHalt is undeidable, we show that we an use a orale for AHaltto build a deider for ATM. This onstrution looks like the following.Lemma 2.1 The language ATM redues to AHalt. Namely, given an orale for AHalt one anbuild a deider (that uses this orale) for ATM.2

Proof: Let ORACHalt be the given orale for AHalt. We build the following deider for
ATM. Deider-ATM(〈M, w〉

)

res← ORACHalt

(

〈M, w〉
)// if M does not halt on w then rejet.if res = rejet thenhalt and rejet.// M halts on w sine res =aept.// Thus, simulating M on w would terminate in finite time.

res2 ←Simulate M on w (using UTM).return res2.Clearly, this proedure always return and as suh its a deider for ATM.Theorem 2.2 The language AHalt is not deidable.Proof: Assume, for the sake of ontradition, that AHalt is deidable. As suh, there is aTM, denoted by TMHalt, that is a deider for AHalt. We an use TMHalt as an implementationof an orale for AHalt, whih would imply by Lemma 2.1 that one an build a deider for
ATM. However, ATM is undeidable. A ontradition. It must be that AHalt is undeidable.We will be usually less formal in our presentation. We will just show that given a TMdeider for AHalt implies that we an build a deider for ATM. This would imply that ATMis undeidable.Thus, given a blak box (i.e., deider) TMHalt that an deide membership in AHalt, webuild a deider for ATM is follows.

〈M, w〉 〈M, w〉
TMHalt

Simulate M

on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

This would imply that if AHalt is deidable, then we an deide ATM, whih is of ourseimpossible.
3

3 EmptinessNow, onsider the language
ETM =

{

〈M〉
∣

∣

∣
M is a TM and L(M) = ∅

}

.Note: In lass (see slides/video), we proved the above slightly di�erently, where the deiderfor ATM worked by onstruting, on input 〈M, w〉 a new TM M ′ whose language was either
∅ or {w}. Below is a variant.Again, we assume that we have a deider for ETM. Let us all it TMETM. We need to usethe omponent TMETM to build a deider for ATM.A deider for ATM is given M and w and must deide whether M aepts w. We needto restruture this question into a question about some Turing mahine having an emptylanguage. Notie that the deider for ETM takes only one input: a Turing mahine. So wehave to somehow make the seond input (w) disappear.The key trik here is to hard-ode w into M , reating a TM Mw whih runs M on the�xed string w. Spei�ally the ode for Mw might look like:TM Mw:1. Input = x (whih will be ignored)2. Simulate M on w.3. If the simulation aepts, aept. If the simulation rejets, rejet.Its important to understand what is going on. The input is 〈M〉 and w. Namely, a stringenoding M and a the string w. The above shows that we an write a proedure (i.e., TM)that aepts this two strings as input, and outputs the string 〈Mw〉 whih enodes Mw. Wewill refer to this proedure as EmbedString. The algorithm EmbedString(〈M, w〉) assuh, is a proedure reading its input, whih is just two strings, and outputting a string thatenodes the TM 〈Mw〉.It is natural to ask, what is the language of the mahine enoded by the string 〈Mw〉;that is, what is L(Mw)?Beause we are ignoring the input x, the language of Mw is either Σ∗ or ∅. It is Σ∗ if Maepts w, and it is ∅ if M does not aept w.We are now ready to prove the following theorem.Theorem 3.1 The language ETM is undeidable.Proof: We assume, for the sake of ontradition, that ETM is deidable, and let TMETMbe its deider. Next, we build our deider AnotherDeider-ATM for ATM, using the Em-bedString proedure desribed above.

4

AnotherDeider-ATM(〈M, w〉)
〈Mw〉 ← EmbedString (〈M, w〉)
r ← TMETM(〈Mw〉).if r = aept thenrejet.// TMETM(〈Mw〉) rejeted its inputreturn aeptConsider the possible behavior of AnotherDeider-ATM on the input 〈M, w〉.

• If TMETM aepts 〈Mw〉, then L(Mw) is empty. This implies that M does not aept
w. As suh, AnotherDeider-ATM rejets its input 〈M, w〉.
• If TMETM aepts 〈Mw〉, then L(Mw) is not empty. This implies that M aepts w. SoAnotherDeider-ATM aepts 〈M, w〉.Namely, AnotherDeider-ATM is indeed a deider for ATM, (its a deider sine it alwaysstops on its input). But we know that ATM is undeidable, and as suh it must be that ourassumption that ETM is deidable is false.In the above proof, note that AnotherDeider-ATM is indeed a deider, so it alwayshalts, either aepting or rejeting. By ontrast, Mw might not always halt. So, when wedo our analysis, we need to think about what happens if Mw never halts. In this example,if M never halts on w, then w will be treated just like the expliit rejetion ases and this iswhat we want.Here is the ode for AnotherDeider-ATM in �ow diagram form.
Observe, that AnotherDeider-ATM never atually runs the ode for Mw. It hands theode to a funtion TMETM whih analyzes what the ode would do if we ever did hoose torun it. But we never run it. So it does not matter that Mw might go into an in�nite loop.Also notie that we have two input strings �oating around our ode: w (one input to thedeider for ATM) and x (input to Mw). Be areful to keep trak of whih strings are inputto whih funtions. Also be areful about how many inputs, and what types of inputs, eahfuntion expets.

5

	What is a reduction?
	Formal argument

	Halting
	Emptiness

