CS 273: Intro to Theory of Computation, Spring 2008 Problem Set 7 Due Monday, March 3rd, 4pm.

This homework contains four problems. Please submit each on a separate sheet of paper. This will help us grade your homeworks more quickly. Turn in your homework at Elaine Wilson's office (3229 Siebel).

1. Suffix languages.

Consider the following DFA:

(a) Write down the suffix language for each state.
(b) Draw a DFA that has the same language as the one above, but has the minimal number of states.

2. Context-Free grammar design

Give context-free grammars generating the following languages:
(a) $L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{p} \mid 0<p<n\right\}$.
(b) $L_{2}=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \in \mathbb{N}\right\}$
(c) $L_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mathrm{c}^{p} \mid n=m\right.$ or $\left.m=p\right\}$.
(d) $L_{4}=\mathrm{a}\left(\mathrm{ab}^{*}\right)^{*}$.

3. Context-free grammar interpretation.

(a) What is the language of this grammar? The alphabet is $\{a, b, c, d\}$ and start symbol is T.

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b} \mid \epsilon \\
& T \rightarrow S|\mathrm{c} T| T \mathrm{~d}
\end{aligned}
$$

(b) Answer the same question for this grammar, with same alphabet and start symbol.

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b} \mid \epsilon \\
& T \rightarrow S|\mathrm{c} S| S \mathrm{~d}
\end{aligned}
$$

(c) Answer the same question for this grammar, with same alphabet and start symbol.

$$
\begin{aligned}
& S \rightarrow T \mathrm{~b} \\
& T \rightarrow \mathrm{aa} S \mid \mathrm{cd}
\end{aligned}
$$

4. NFA Pattern matching.

Pattern-search programs take two inputs: a pattern given by the user and a file of text. The program determines whether the text file contains a match to the pattern, typically using some variation on NFA/DFA technology. Fully developed programs, such as grep, accept patterns containing regular-expression operators (e.g. union) and also other convenient shorthands. Our patterns will be much simpler.
Let's fix an alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots . \mathrm{z}, \sqcup\}$. Let $\Gamma=\Sigma \cup\{$?, [,], $*\}$. A pattern will be any string in Γ^{*}.
A string w matches a pattern p if you can line up the characters in the two strings such that:

- When p contains a character from Σ, it must be paired with an identical character in w.
- The character ? in p can match any substring x in w, where x contains at least one character.
- When p contains a substring of the form $[w] *$, this can match zero or more repetitions of whatever w matches.

For example, the pattern "fleck" matches only the string "fleck". The pattern "margaret?fleck" will match anything containing "margaret" and "fleck", separated by at least one character. The pattern "i \sqcup ate \sqcup [many $\sqcup]$ * donuts" matches strings like

```
"i }\sqcup\mathrm{ ate }\sqcup\mathrm{ donuts" and
"i }\sqcup\mathrm{ ate }\sqcup\mathrm{ many }\sqcup\mathrm{ many }\sqcup\mathrm{ donuts"
```

Instances of []* can be nested. So the pattern $\mathrm{cc}[\mathrm{bb}[\mathrm{a}] * \mathrm{bb}] *$ dd matches strings like ccdd or ccbbaaaaabbdd or ccbbabbbbabbdd.
A text file t contains a match to a pattern p if t contains some substring w such that w matches p.

Design an algorithm which converts a pattern p to an NFA N_{p} that searches for matches to p. That is, the NFA N_{p} will read an input text file t and accept t if and only if t contains a match to $p . N_{p}$ searches for only one fixed pattern p. However you must describe a general method of constructing N_{p} from any input pattern p.

You can assume that your input pattern p has been checked to ensure that it's wellformed and that we have a function m which matches open and close brackets. For example, you can assume that an open bracket (]) at position i in the pattern is immediately followed by a star $\left(^{*}\right)$. You can also assume that there is a matching open bracket ([) at position $m(i)$ in the pattern. The function m is a bijection, so if there is an open bracket at position j in the pattern, $m^{-1}(j)$ returns the corresponding close bracket.

