CS 273: Intro to Theory of Computation, Spring 2008 Problem Set 12
 Due Tuesday, April 15th, 10am

This homework contains three problems. Please submit each on a separate sheet of paper. Turn in your homework at Elaine Wilson's office (3229 Siebel).

1. Decidable problems.

Prove that L is a decidable language:

$$
L=\left\{\begin{array}{l|l}
\langle D, k\rangle & \begin{array}{l}
D \text { accepts no string of length } \leq k, \\
\text { and } D \text { is a NFA }
\end{array}
\end{array}\right\} .
$$

2. Enumerators I.

An enumerator for a language L is a Turing machine that writes out a list of all strings in L. See p. 152-153 in Sipser.

The enumerator has no input tape. Instead, it has an output tape on which it prints the strings, with some sort of separator (e.g. \#) between then. The strings can be printed in any order and duplicates of the same string are ok. But each string in L must be printed eventually.
Design an enumerator that writes all tuples of the form (n, p) where $n \in \mathbb{N}, p \in \mathbb{N}$, and n is a multiple of p.
3. Enumerators II.

If L and J are two languages, define $L \oplus J$ to be the language containing all strings that are in exactly one of L and J. That is

$$
L \oplus J=\{w \mid w \in L \text { and } w \notin J \text { or } w \in J \text { and } w \notin L\}
$$

Suppose that you are given two context-free grammars G and H.
(a) Design an enumerator that will print all strings in $L(G) \oplus \mathrm{L}(H)$.
(b) Is $L(G) \oplus \mathrm{E}(H)$ context-free? TM recognizable? TM decidable? Briefly justify your answer.
(c) Recall that

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFG's and } L(G)=L(H)\} .
$$

We have mentioned in class that $E Q_{C F G}$ is undecidable. Why is this problem harder than the ones you just solved in parts (a) and (b)?

