CS 373: Theory of Computation Sariel Har-Peled and Madhusudan Parthasarathy

Problem Set 6

Due: Thursday, March 19, 2009 at 12:30 in class (i.e., SC 1105)
Version: 1.01

(Q1) Building Recursive Automata.

[Category: Construction, Points: 10]
For each of the following languages construct a recursive automaton for it, and briefly describe why it works. Also, for each of these languages, pick a word of length at least 6 in the language and show the run of your automaton on it, including stack contents at each point of the run:
(a) $L_{1}=\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mid i \geq 0,3 i \geq j \geq 2 i\right\}$ over the alphabet $\{\mathrm{a}, \mathrm{b}\}$.
(b) $L_{2}=\left\{w_{1} \$ w_{2} \$ 0^{i} \$ 1^{j}\left|w \in\{\mathrm{a}, \mathrm{b}\}^{*}, i=\left|w_{2}\right|\right.\right.$ and $\left.j=\left|w_{1}\right|\right\}$

Here L_{2} is defined over the alphabet $\{\mathrm{a}, \mathrm{b}, \$, 0,1\}$.
(Q2) Understanding Recursive Automata.
[Category: Understanding, Points: 10]
For the following recursive automaton with initial module S, give the language of the automata precisely.

(Q3) CYK Parsing.
[Category: Understanding, Points: 10]
For the following CNF grammar (with start symbol S) and the following string:

book the flight through champaign

(assume spaces differentiate the various terminals and nonterminals [not single characters]), generate a valid parse tree using the CYK parsing algorithm. Turn in the filled
out chart (matrix) as well.
$S \rightarrow$ NP VP \| X2 PP \| VERB NP \| VERB PP \| VP PP \| book
$\mathrm{NP} \rightarrow i \mid$ she \mid me \mid champaign \mid DET NOMINAL
$\mathrm{DET} \rightarrow$ the $\mid a$
NOMINAL \rightarrow book \mid flight \mid meal \mid NOMINAL NOUN \mid NOMINAL PP
NOUN \rightarrow book \mid flight \mid champaign
VP \rightarrow book \mid include \mid prefer \| VERB NP \| X2 PP \| VERB PP \| VP PP
VERB \rightarrow book \mid flight
X2 \rightarrow VERB PP
PP \rightarrow PREPOSITION NP
PREPOSITION \rightarrow through
In the above, the terminals are $\Sigma=\{$ book, i, she, me, champaign, the, a, flight, meal, include, prefer, through $\}$.

(Q4) Closure Properties of CFLs

[Category: Proof, Points: 10]
For each of the following languages, prove that they are not context free using closure properties discussed in class to generate a known non-context free language such as $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$. You can assume that CFLs are closed under homomorphisms and inverse homomorphisms as well.
(a) $L_{1}=\left\{w \in\{a, b, c, d\}^{*} \mid \#_{a}(w)=\#_{b}(w)=\#_{c}(w)=\#_{d}(w)\right\}$ where $\#_{a}(w)$ denotes the number of a 's in w, etc.
(b) $L_{2}=\left\{0^{i} \# 0^{2 i} \# 0^{3 i} \mid i \geq 0\right\}$

(Q5) Shuffle

[Category: Proof, Points: 10]
For a given language, L, we will define $\operatorname{Shuffle}(L)$ as follows:
$\{w|y \in L,|y|=|w|$ and, w is a permutation of letters in $y\}$
For instance if $L=\{a b, a d a\}$, Shuffle $(L)=\{a b, b a, a a d, a d a, d a a\}$
Prove that if L is a regular language, then $\operatorname{Shuffle}(L)$ is not necessarily a CFL. In other words, prove that the statement "For every regular language L, $\operatorname{Shuffle}(L)$ is a CFL" is false.

