
˜ CS 373: Theory of Computation
˜ Sariel Har-Peled and Madhusudan Parthasarathy

Problem Set 5
Due: Thursday, March 12, 2009 at 12:30 in class (i.e., SC 1105)
Version: 1.0

Submission instructions: Submit each problem on a separate sheet of paper, put your name
on each sheet, and write your discussion section time and day (e.g. Tuesday 10am) in the upper
righthand corner. These details may sound picky, but they make the huge pile of homeworks much
easier to grade quickly and more importantly, since we return them in the discussion sections,
easier for you to get them back.

Also, write on each exercise the name/netid of your group members.

(Q1) What is in, what is out?
[Category: Understanding., Points: 10]

For each of the following grammars answer the following:

(a) Is abcd in the language of the grammar? If so give an accompanying derivation and parse
tree.

(b) Is acaada in the language of the grammar, if so give an accompanying derivation and
parse tree.

(c) What is the language generated by the grammar and explain your answer.

(Note: assume Σ = {a, b, c, d} and the start symbol is S for both grammars.)

G1:

S→ aSd | A | C
A→ aAc | B
B→ bBc | ε
C→ bCd | B

G2:
S→ B | AA
A→ cA | dB
B→ aSa | ε.

(Q2) Building grammars.
[Category: Construction., Points: 10]

Show that the following languages are context-free by giving a context-free grammar for each
of them.

(a) L =
{
aibj

∣∣∣ 2i ≤ j ≤ 3i, i, j ∈ N
}
.

(Hint: Build a grammar for the case that j = 2i and the case j = 3i, and think how to
fuse these two grammars together to a single grammar.)

(b) L′ =
{
w ∈ {0, 1}∗

∣∣∣∣ w contains equal number of occurrences of
substring 01 and 10

}
.

Thus 101 contains a single 01 and a single 10 and as such belongs to the language, while
1010 does not as it contains two 10’s and one 01.

(Q3) Prove this.
[Category: Proof, Points: 10]

Consider the following proof.

1

Lemma 0.1 If L1 and L2 are both context-free languages, then L1 ∪ L2 is a context-free
language.

Proof: Let G1 = (V1,Σ,R1, S1) and G2 = (V2,Σ,R2, S2) be context free grammars for L1 and
L2, respectively, where V1 ∩ V2 = ∅. Create a new grammar

G =(V1 ∪ V2,Σ,R,S) ,

where S /∈ V1 ∪ V2 and R = R1 ∪R2 ∪
{

S→ S1, S→ S2

}
.

We next prove that L(G) = L1 ∪ L2.

L(G) ⊆ L1 ∪ L2:
Consider any w ∈ L(G), and any derivation of w by G. It must be of the following form:

S→ Si → X1X2 → . . .→ w,

where i is either 1 or 2. Assume, without loss of generality, that i = 1, and observe that
if we remove the first step, this derivation becomes

S1 → X1X2 → . . .→ w.

Namely, S1
∗=⇒ w using grammar rules only from R1. We conclude that w ∈ L(G1) =

L1, as S1 is the start symbol of G1.
The case i = 2 is handled in a similar fashion.
Thus, we conclude that w ∈ L1 ∪ L2, implying that L(G) ⊆ L1 ∪ L2.

L1 ∪ L2 ⊆ L(G):
Consider any word w ∈ L1 ∪ L2, and assume without limiting generality, that w ∈ L1.
As such, we have that S1

∗=⇒
G1

w. But S→ S1 is a rule in G, and as such we have that

S→ S1
∗=⇒
G1

w.

Namely, S
∗=⇒
G

w, since all the rules of G1 are in G. We conclude that w ∈ L(G).

Putting the above together, implies the lemma.

Provide a detailed formal proof to the following claim, similar in spirit and structure to the
above proof.

Lemma 0.2 If L! and L2 are both context-free languages, then L1L2 is a context-free language.

(Q4) Edit with some mistakes.
[Category: Construction., Points: 10]

The edit distance between two strings w and w′, is the minimal number of edit operations
one has to do to modify w into w′. We denote this distance between two strings x and y
by EditDist(x, y). We allow the following edit operations: (i) insert a character, (ii) delete a
character, and (iii) replace a character by a different character.

2

For example, the edit distance between shalom and halo is 2. The edit distance between
har-peled and sharp␣eyed is 4:

har-peled =⇒ shar-peled =⇒ sharpeled =⇒ sharp␣eled =⇒ sharp␣eyed.

For the sake of simplicity, assume that Σ = {a, b, $}. For a parameter k, describe a CFG for
the language

Lk =
{
x$yR

∣∣∣x, y ∈ {a, b}∗ ,EditDist(x, y) ≤ k
}
.

For example, since EditDist(aba, bab) = 2, we have that aba$bab ∈ L2, but aba$bab /∈ L1.
Similarly, EditDist(aaaa, abb) = 3, and as such aaaa$bba ∈ L3, but aaaa$bba /∈ L2.

(Hint: What is the language L0? Try to give a grammar to L1 before solving the general
case.)

Provide a short argument why your CFG works.

(Q5) Speedup theorem for CFGs.
[Category: Proof., Points: 10]

Assume you are given a CFG G = (V,Σ,R, S), such that any word w ∈ L(G) has a derivation
of w with f(n) steps, where n = |w|. Here f(n) is some function.

Prove the following claim.

Claim 0.3 There exists a grammar G′ such that L(G) = L(G′), and furthermore, any deriva-
tion of a word w ∈ L(G) of length n requires at most df(n)/2e derivation steps.

For example, consider the grammar S→ aSb | ε.
A word anbn can be derived using n+ 1 steps. Its speeded up version is

S′ → aaS′bb | ab | ε.

Now, anbn has derivation of length d(n+ 1)/2e by the grammar of S′.

(Hint: Consider a parse tree of height h in the grammar, and think how to modify the
grammar, so that you get a parse tree for the same word with height only dh/2e.)

3

