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This lecture presents more example of languages that are Turing decidable, from Sipser
section 4.1.

1 Review: decidability facts for regular languages
A language is decidable if there is a TM that is a decider (i.e., a TM that always stops)
that accepts this language. If M is a DFA, the string encoding of M is written as 〈M〉. The
encoding of a pair M and w is written as 〈M, w〉.

Decidable DFA problems. The following languages are all decidable.

(A) EDFA =
{
〈M〉

∣∣∣ M is a DFA and L(M) = ∅
}
.

This is the language of all DFAs with an empty language.

(B) EQDFA: the language of all pairs of DFAs that have the same language.

(C) ADFA =
{
〈M, w〉

∣∣∣ M is a DFA, w is a word, and M accepts w
}
.

Here 〈M, w〉 is in the language if and only if the DFA M accepts w.

(D) ANFA =
{
〈M, w〉

∣∣∣ M is a NFA generating w
}
.

(E) EQDFA =
{
〈M, D〉

∣∣∣ M, D are DFA’s and L(M) = L(D)
}
.

(F) Aregex =
{
〈R,w〉

∣∣∣R is a regular expression generating w
}
.

To decide this language, the TM can convert R into a DFA M, and then check if 〈M, w〉 ∈
ADFA.

2 Problems involving context-free languages
The situation with context-free languages is more complicated, because some problems are
Turing decidable and some are not.
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2.1 Context-free languages are TM decidable

Given a RA P, we are interested in the question of whether we can build a TM decider that
accepts L(M). Observe, that we can turn P into an equivalent CFG, and this CFG can be
turned into an equivalent CNF grammar G. With G it is now easy to decide if an input
word w is in L(G). Indeed, we can either using the CYK algorithm to decide if a word is
in the grammar, or alternatively, enumerate all possible parse trees for the given CNF that
generates the given word w. That is, if n = |w|, then we need to generate all possible parse
trees with 2n − 1 internal nodes (since this is the size of a parse tree deriving such a word
in CNF), and see if any of them generates w. In either case, we have the following.

Lemma 2.1 Given a RA P, there is a TM T which is a decider, and L(P) = L(T). Namely,
for every RA there exists an equivalent TM.

2.2 Is a word in a CFG?

The following construction of a TM is somewhat similar to the one in Section 2.1.

Lemma 2.2 The language ACFG =
{
〈G, w〉

∣∣∣G is a CFG and G generates w
}
. is decidable.

Proof: We build a TM TCFG for ACFG. The input for it is the pair 〈G, w〉. AS a first step,
we convert G to be in CNF (we saw the algorithm of how to do this in detail in class). Let
G ′ denote the resulting grammar. Next, we use CYK to decide if w ∈ L(G ′). If it is, the TM
TCFG accepts, otherwise it rejects.

Given a TM decider TCFG for ACFG, building a TM decider that has language equal to a
specific given G is easy. Specifically, given G, we would like to build a TM decider T′ such
that L(T′) = L(G).

So, modify the given TM to encode G. As a first step, the new TM T′ would write G on
the input tape (next to the input word w). Next, it would run the TM TCFG on this given
input to decide if 〈G, w〉 ∈ ACFG.

Remark 2.3 (Encoding instances inside a TM.) The above demonstrates that given a
more general algorithm we can use it to solve the problem for specific instances. This is done
by encoding the given specific instance in the constructed TM.

If you have trouble imaging this encoding the whole CFG grammar into the TM, as done
above, think about storing a short string like UIUC in the TM state diagram, to be written
out on (say) tape 2. The first state transition in the TM would write U onto tape 2, the
next three transitions would write I, then U, then C. Finally, it would move the tape 2 head
back to the beginning and transition into the first state that does the actual computation.

Note, that doing this encoding of a specific instance inside the TM, does not necessarily
yields the most efficient TM for the problem. For example, in the above, we could first
convert the given instance into CNF before encoding it into the TM.

We could also hard-code the string w into our TM but leave the grammar as a variable
input. We omit the proof of the following easy lemma.
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Lemma 2.4 Let w be a specific string. The language ACFG,w =
{
〈G〉

∣∣∣G is a CFG and G generates w
}

is decidable.

2.3 Is a CFG empty?

Lemma 2.5 The language ECFG =
{
〈G〉

∣∣∣G is a CFG and L(G) = ∅
}

is decidable.

Proof: We already saw that in the conversion algorithm of a CFG into CNF (this was one
of the initial steps of this conversion). We shortly re-sketch the algorithm.

To this end, the TM mark all the variables in G that can generate (in one step) a string
of terminals (or ε of course). We will refer to such a variable as being useful. Now, the TM
iterates repeatedly over the rules of G. For a rule X → w, where w is a string of terminals
and variables, the variable X is useful, if all the variables of w are useful, and in such a case
we will mark X as useful. The loop halts when the TM has made a full pass through the
rules of G without marking anything new as useful.

This TM accepts the input grammar if the initial variable of G is useful, and otherwise
it rejects.

At every iteration over all the rules of G the TM must designate at least one new variable
as new to repeat this process again. So it follows that the number of outer iterations per-
formed by this algorithm is bounded by the number of variables in the grammar G‘, implying
that this algorithm always terminates.

2.4 Undecidable problems for CFGs

We quickly mention a few problems that are not TM decidable. We will prove this fact later
in the course. The following languages are not TM decidable.

(i) EQCFG =
{
〈G,G ′〉

∣∣∣G,G ′ are CFG and L(G) = L(G ′)
}
.

To see why this is surprising, we remind the reader that this language was solvable for
DFAs.

(ii) ALLCFG =
{
〈G〉

∣∣∣G is a CFG and L(G) = Σ∗
}
.

3 Simulating a real computer with a Turing machine
We would like to argue that we can simulate a “real” world computer on a Turing machine.
Here are some key program features that we would like to simulate on a TM.

• Numbers & arithmetic: We already saw in previous lecture how some basic integer
operations can be handled. It is not too hard to extend these to negative integers and
perform all required numerical operations if we allow a TM with multiple tapes. As
such, we can assume that we can implement any standard numerical operation.
Of course, can also do floating point operations on a TM. The details are overwhelming
but they are quite doable. In fact, until 20 years1 ago, many computers implemented

1This number keep changing. Very irritating.
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floating point operations using integer arithmetic. Hardware implementation of floating
point-operations became mainstream, when Intel introduced the i486 in 1989 that
had FPU (floating-point unit). You would probably will see/seen how floating point
arithmetic works in computer architecture courses.

• Stored constant strings: The program we are trying to translate into a TM might
have strings and constants in it. For example, it might check if the input contains the
(all important) string UIUC. As we saw above, we can encode such strings in the states.
Initially, on power-up, the TM starts by writing out such strings, onto a special tape
that we use for this purpose.

• Random-access memory: We will use an associative memory. Here, consider the
memory as having a unique label to identify it (i.e., its address), and content. Thus, if
cell 17 contains the value abc, we will consider it as storing the pair (17, abc). We can
store the memory on a tape as a list of such pairs. Thus, the tape might look like:

(17, abc)$(1, samuel)$(85, noclue)$ . . . (11, stamp)$␣␣␣␣␣ . . .

Here, address 17 stores the string abc, address 1 stores the string samuel, and so on.

Reading the value of address x from the tape is easy. Suppose x is written on 
i ,
and we would like to find the value associated with x on the memory tape and write
it onto 
j. To do this, the TM scans 
mem the memory tape (i.e., the tape we use to
simulate the associative memory) from the beginning, till the TM encounter a pair in

mem having x as its first argument. It then copies the second part of the pair to the
output tape 
j.

Storing new value (x, y) in memory is almost as easy. If a pair having x as first element
exists you delete it out (by writing a special cross-out character over it), and then you
write the new pair (x, y) in the end of the tape 
mem.

If you wanted to use memory more efficiently, the new value could be written into
the original location, whenever the original location had enough room. You could also
write new pairs into crossed-out regions, if they have enough room. Implementations
of C malloc/free and Java garbage collection use slightly more sophisticated versions
of these ideas. However, TM designers rarely care about efficiency.

• Subroutine calls: To simulate a real program, we need to be able to do calls (and
recursive calls). The standard way to implement such things is by having a stack. It
is clear how to implement a stack on its own TM tape.

We need to store three pieces of information for each procedure call:

(i) private working space,
(ii) the return value,
(iii) and the name of the state to return to after the call is done.

The private working space needs to be implemented with a stack, because a set of
nested procedure calls might be active all at once, including several recursive calls to
the same procedure.

4



The return value can be handled by just putting it onto a designated register tape, say

24.

Right before we give control over to a procedure, we need to store the name of the
state it should return to when it is done. This allows us to call a single fixed piece of
code from several different places in our TM. Again, these return points need to be put
on a stack, to handle nested procedure calls.

After it returns from a procedure, the TM reads the state name to return to. A special
set of TM states handle reading a state name and transitioning to the corresponding
TM state.

These are just the most essential features for a very simple general-purpose computer. In
some computer architecture class, you will see how to implement fancier program features
(e.g. garbage collection, objects) on top of this simple model.

4 Turing machine simulating a Turing machine

4.1 Motivation

We already seen that a TM can simulate a DFA. We think about TMs as being just regular
computer programs. So think about an interpreter. What is it? It is a program that reads
in another program (for example, think about Java virtual machine) and runs it.2

So, what would be the equivalent of an inter-
preter in the language of Turing machines? Well,
its a TM that reads in a description of a TM M ,
and an input w for it, and simulates running M on
w.

Initially this construct looks very weird - inher-
ently circular in nature. But it is useful for the
same reason interpreters are useful: It enable us to
manipulate TMs (i.e., programs) directly and mod-
ify them without knowing in advance what they
are. In particular, we can start talking compu-
tationally about ways of manipulating TMs (i.e.,
programs).

For example, in a perfect world (which we are not living in, naturally), we would like to
give a formal specification of a program (say, a TM that decides if a prime number is prime),
and have another program that would swallow this description and spits out the program
performing this computation (i.e., have a computer that writes our programs for us).

A more realistic example is a compiler which translates (say) Java code into assembly
code. It takes code as input and procedures code in a different language as output. We could

2Things of course are way more complicated in practice, since Java virtual machines nowadays usually
compile portions of the code being run frequently to achieve faster performance (i.e., just in time compilation
[JIT]), but still, you can safely think about a JVM as an interpreter.
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also build an optimizer that reads Java code and produces new code, also in Java but more
efficient. Or a cheating helper program that reads Java code and writes out a new version
with different variable names and modified comments.

4.2 The universal Turing machine

We would like to build the universal Turing machine UTM that recognizes the language

ATM =
{
〈T, w〉

∣∣∣ T is a TM and T accepts w
}
.

We emphasize that UTM is not a decider. Namely, its stops only if T accepts w, but it might
run forever if T does not accept w.

To simplify our discussion, we assume that T is a single tape machine with some fixed
alphabet (say ΣT = {0, 1} and the tape alphabet is ΓT = {0, 1, ␣}. To simplify the discussion,
the TM for ATM is going to be a multi-tape machine. Naturally, one can convert this TM
into a single tape TM.

So, the input for UTM is an encoding 〈T, w〉. As a first step, the UTM would verify that the
input is in the right format (such a reasonable encoding for a TM was given as an exercise in
the homework). The UTM would copy different components of the input into different tapes:


1 : Transition function δ of T.

It is going to be a sequence (separated by $) of transitions. A transition (q, c)→ (q′, t, L)
would be encouded as a string of the form:

(#q, c)− (#q′, t, L)

where #q is the index which is the index of the state q (in T) and #q′ is the index of
q′.

More specificially, you an think about the states of T being numbered between 1 and
m, and #q is just the binary representation of the index of the state q.


2 : #q0 – the initial state of T.


3 : #qacc – the accept state of T.


4 : #qrej – the reject state of T .


5 : $w – the input tape to be handled.

Once done copying the input, the UTM would move the head of 
5 to the beginning of
the tape. It then performs the following loop:

(I) Loop:

(i) Scan 
1 to find transition matching state on 
2 and the character under the
head of 
5.

(ii) Update state on 
2.
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(iii) Update character and head position on 
5.

We repeat this till the state in 
2 is equal to the state written on either 
3 (qacc) or

4 (qrej).

Naturally, UTM accepts if
2 = 
3 and rejects if
2 = 
4 at any point during the simulation.
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