Problem Set 9 CS 373: Theory of Computation

Assigned: November 15, 2013 Due on: November 21, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow the homework guidelines given on the class website; submitions not following these guidelines will not be graded.

Recommended Reading: Lecture 19, 20, and 21.
Problem 1. [Category: Comprehension+Proof] For strings $u, v \in \Sigma^{*}$, we will say $u<v$ to denote that u is less than v in the lexicographic order. An enumerator N is said to enumerate strings in lexicographic order iff for any strings $u, v \in \mathbf{E}(N)$, if $u<v$ then N prints u before v. In this problem, you are required to prove that a language is decidable iff some enumerator enumerates the language in lexicographic order.

1. Let M be a Turing machine that decides the language L. Show that there is enumerator N such that $\mathbf{E}(N)=L$ and N enumerates the words in L in lexicographic order.
[5 points]
2. Let N be an enumerator that enumerates strings in lexicographic order. If $\mathbf{E}(N)$ is finite then $\mathbf{E}(N)$ is regular and, therefore, decidable. Prove that if $\mathbf{E}(N)$ is infinite then there is a Turing machine M that decides $\mathbf{E}(N)$.
[5 points]

Problem 2. [Category: Comprehension+Design] Show that

$$
\operatorname{Inf}_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a CFG such that } \mathbf{L}(G) \text { is infinite }\}
$$

is decidable by outlining an algorithm that decides this problem; you need not prove that your algorithm is correct. Hint: You may find it useful to look at the solution for problem 1 in Discussion 12 (or problem 4.10 in the textbook) and think about the pumping lemma for CFGs.
[10 points]
Problem 3. [Category: Comprehension+Design+Proof] Disjoint languages A and B are said to be recursively separable if there is a decidable language L such that $A \subseteq L$ and $B \subseteq \bar{L}$. Prove that if A and B disjoint languages such that \bar{A} and \bar{B} are recursively enumerable then A and B are recursively separable. [10 points]

