
Problem Set 9
CS 373: Theory of Computation

Assigned: December 3, 2013 Due on: December 10, 2013

Instructions: This homework has 3 problems that can be solved in groups of size at most 3. Please follow
the homework guidelines given on the class website; submitions not following these guidelines will not be
graded.

Recommended Reading: Lecture 23 and 24.

Problem 1. [Category: Comprehension+Proof] The Post Correspondence Problem (PCP) is the following.
Given a set of tiles with two strings, one on the top and the other at the bottom, you want to determine if
there is a list of these tiles (repetitions allowed) so that the string obtained by reading the top symbols is
the same as the string obtained by reading the bottom symbols. This list is called a “match”. For example,
consider the set of tiles {[

b

ca

]
,
[ a
ab

]
,
[ca
a

]
,

[
abc

c

]}
If we consider the sequence of tiles [ a

ab

] [ b

ca

] [ca
a

] [ a
ab

] [abc
c

]
the top string is a · b · ca · a · abc = abcaaabc while the bottom string is ab · ca · a · ab · c = abcaaabc, is the
same. However, not all sets of tiles have a match. For example,{[

abc

a

]
,
[ca
a

]
,
[acc
ba

]}
does not have a match. More formally, given

P =

{[
t1
b1

]
,

[
t2
b2

]
, . . .

[
tk
bk

]}
we need to determine if there is a sequence i1, i2, . . . in, where every ij ∈ {1, 2, . . . k}, such that ti1ti2 · · · tin =
bi1bi2 · · · bin . Thus,

PCP = {〈P 〉 | P is a set of tiles that has a match}

The PCP problem is known to be undecidable; interested students can read section 5.2 of Sipser’s book.

Consider AMBIGCFG = {〈G〉 |G is an ambiguous CFG}. Prove that AMBIGCFG is undecidable by reducing
PCP to AMBIGCFG. Hint: Given an instance of PCP

P =

{[
t1
b1

]
,

[
t2
b2

]
, . . .

[
tk
bk

]}
construct a CFG G with rules

S → T |B
T → t1Ta1 | · · · | tkTak | t1a1 | · · · | tkak
B → b1Ba1 | · · · | bkBak | b1a1 | · · · | bkak

where a1, . . . ak are new terminal symbols. Prove that this reduction is correct. [10 points]
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Problem 2. [Category: Proof] Let A,B ⊆ {0, 1}∗ be r.e. languages such that A∪B = {0, 1}∗ and A∩B 6= ∅.
Prove that A ≤m (A ∩B). You may assume that x0 is a string in A ∩B. [10 points]

Problem 3. [Category: Proof] [Matt’s Problem] Infinite lists are data structures that are supported by
many programming languages like Haskell, Python, and Scheme. How easy is it to sort such lists? We will
investigate that in this problem.

Observe that any list is just a function that given a position (in the list) returns the element at that position.
Thus, infinite lists in these programming languages can be mathematically defined as follows. A Turing
machine (or program) M is an infinite list if M computes a function fM : N → N, i.e., given any n ∈ N as
input, M halts with fM (n) on its tape. For any Turing machine M that is an infinite list, we will denote
the “list” (or the function) it represents by fM . Finally, note that because of the well-ordering property of
natural numbers, for any f : N→ N, the value minn∈N f(n) exists.

1. Let
MIN = {〈M,m〉 |M is an infinite list and m = min

n∈N
fM (n)}

Prove that HALT ≤m MIN, where HALT = {〈M,w〉 |M does not halt on w}. [4 points]

2. For any function f : N→ N, define the sorted form of f to be the function f̂ : N→ N such that f̂(i) is
the (i+ 1)th smallest item in the infinite sequence of items f(0), f(1), . . . . Define the language SORT
as

SORT = {〈M,M̂〉 |M, M̂ are infinite lists and f̂M = f
M̂
}

That is, SORT consists of pairs of Turing machines M and M̂ such that M̂ is the sorted list corre-
sponding to M . Show that MIN ≤m SORT. [4
points]

3. What can you conclude about MIN and SORT based on the above observations? For each language
pick from decidable, undecidable but recursively enumerable, and not recursively enumerable. [2
points]
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