1 Closure Properties

1.1 Decidable Languages

Boolean Operators

Proposition 1. Decidable languages are closed under union, intersection, and complementation.

Proof. Given TMs M_1, M_2 that decide languages L_1, and L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.)

- A TM that decides $\overline{L_1}$: On input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts. □

Regular Operators

Proposition 2. Decidable languages are closed under concatenation and Kleene Closure.

Proof. Given TMs M_1 and M_2 that decide languages L_1 and L_2.

- A TM to decide L_1L_2: On input x, for each of the $|x|+1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to decide L_1^*: On input x, if $x = \epsilon$ accept. Else, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \ldots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject. □

Inverse Homomorphisms

Proposition 3. Decidable languages are closed under inverse homomorphisms.

Proof. Given TM M_1 that decides L_1, a TM to decide $h^{-1}(L_1)$ is: On input x, compute $h(x)$ and run M_1 on $h(x)$; accept iff M_1 accepts. □

Homomorphisms

Proposition 4. Decidable languages are not closed under homomorphism

Proof. We will show a decidable language L and a homomorphism h such that $h(L)$ is undecidable

- Let $L = \{xy \mid x \in \{0, 1\}^*, y \in \{a, b\}^*, x = \langle M, w \rangle$, and y encodes an integer n such that the TM M on input w will halt in n steps \}

- L is decidable: can simply simulate M on input w for n steps

- Consider homomorphism h: $h(0) = 0$, $h(1) = 1$, $h(a) = h(b) = \epsilon$.

- $h(L) = \text{HALT}$ which is undecidable. □
1.2 Recursively Enumerable Languages

Boolean Operators

Proposition 5. R.E. languages are closed under union, and intersection.

Proof. Given TMs M_1, M_2 that recognize languages L_1, L_2

- A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation)

Complementation

Proposition 6. R.E. languages are not closed under complementation.

Proof. A_{TM} is r.e. but $\overline{A_{TM}}$ is not.

Regular Operations

Proposition 7. R.E languages are closed under concatenation and Kleene closure.

Proof. Given TMs M_1 and M_2 recognizing L_1 and L_2

- A TM to recognize L_1L_2: On input x, do in parallel, for each of the $|x| + 1$ ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

- A TM to recognize L_1^*: On input x, if $x = \epsilon$ accept. Else, do in parallel, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \ldots w_k (w_i \neq \epsilon)$: run M_1 on each w_i and accept if M_1 accepts all. Else reject.

Homomorphisms

Proposition 8. R.E. languages are closed under both inverse homomorphisms and homomorphisms.

Proof. Let TM M_1 recognize L_1.

- A TM to recognize $h^{-1}(L_1)$: On input x, compute $h(x)$ and run M_1 on $h(x)$; accept iff M_1 accepts.

- A TM to recognize $h(L_1)$: On input x, start going through all strings w, and if $h(w) = x$, start executing M_1 on w, using dovetailing to interleave with other executions of M_1. Accept if any of the executions accepts.