1 Reductions

1.1 Introduction

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- The problem L_d reduces to the problem A_{TM} as follows: “To see if $\langle M \rangle \in L_d$ check if $\langle M, \langle M \rangle \rangle \in A_{TM}$.”

Undecidability using Reductions

Proposition 1. Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.
Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2. Then the following algorithm decides L_1

- On input w, apply reduction to transform w into an input w' for problem 2
- Run M on w', and use its answer.

This can be seen Pictorially as follows.

![Figure 1: Reductions schematically](image)

The Halting Problem

Proposition 2. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.
Proof. We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine $f(M)$ as follows:

On input x

- Run M on x
- If M accepts then halt and accept
- If M rejects then go into an infinite loop

Observe that $f(M)$ halts on input w if and only if M accepts w

Suppose HALT is decidable. Then there is a Turing machine H that always halts and $L(H) = \text{HALT}$. Consider the following program T

On input $\langle M, w \rangle$

- Construct program $f(M)$
- Run H on $\langle f(M), w \rangle$
- Accept if H accepts and reject if H rejects

T decides A_{TM}. But, A_{TM} is undecidable, which gives us the contradiction.

1.2 Definitions and Observations

Mapping Reductions

Definition 3. A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine M that on every input w halts with $f(w)$ on the tape.

Definition 4. A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f : \Sigma^* \to \Sigma^*$ such that

$$w \in A \text{ if and only if } f(w) \in B$$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective “mapping” or “many-one”, and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition 5. If $A \leq_m B$ and B is r.e., then A is r.e.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is
On input w
Compute $f(w)$
Run M_B on $f(w)$
Accept if M_B accepts, and reject if M_B rejects

\[\text{Corollary 6. If } A \leq_m B \text{ and } A \text{ is not r.e., then } B \text{ is not r.e.} \]

Reductions and Decidability

Proposition 7. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine deciding B. Then a Turing machine that decides A is

On input w
Compute $f(w)$
Run M_B on $f(w)$
Accept if M_B accepts, and reject if M_B rejects

\[\text{Corollary 8. If } A \leq_m B \text{ and } A \text{ is undecidable, then } B \text{ is undecidable.} \]

1.3 Examples

The Halting Problem

Proposition 9. The language $\text{HALT} = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT undecidable}.$

Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept
If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Emptiness of Turing Machines

Proposition 10. The language $E_{\text{TM}} = \{ \langle M \rangle \mid L(M) = \emptyset \}$ is not r.e.

Proof. Recall $L_d = \{ \langle M \rangle \mid M \not\in L(M) \}$ is not r.e.
L_d is reducible to E_{TM} as follows. Let $f(M) = \langle N \rangle$ where N is a TM that behaves as follows:
On input x
- Run M on $\langle M \rangle$
- Accept x only if M accepts $\langle M \rangle$

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$ if and only if $\langle M \rangle \in L_d$. □

Checking Regularity

Proposition 11. The language $\text{REGULAR} = \{ \langle M \rangle | L(M) \text{ is regular} \}$ is undecidable.

Proof. We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = \langle N \rangle$, where N is a TM that works as follows:

- **On input** x
 - If x is of the form 0^n1^n then accept x
 - Else run M on w and accept x only if M does

 If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n1^n | n \geq 0 \}$. Thus, $\langle N \rangle \in \text{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\text{TM}}$. □

Checking Equality

Proposition 12. $\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$ is not r.e.

Proof. We will give a reduction f from E_{TM} to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

Observe $\langle M \rangle \in \text{E}_{\text{TM}}$ iff $L(M) = \emptyset$ iff $L(M) = L(M_1)$ iff $\langle M, M_1 \rangle \in \text{EQ}_{\text{TM}}$. □