1 High-Level Descriptions of Computation

High-Level Descriptions of Computation

• Instead of giving a Turing Machine, we shall often describe a program as code in some programming language (or often “pseudo-code”)
 – Possibly using high level data structures and subroutines
• Inputs and outputs are complex objects, encoded as strings
• Examples of objects:
 – Matrices, graphs, geometric shapes, images, videos, ...
 – DFAs, NFAs, Turing Machines, Algorithms, other machines ...

Encoding Complex Objects

• “Everything” finite can be encoded as a (finite) string of symbols from a finite alphabet (e.g. ASCII)
 – Can in turn be encoded in binary (as modern day computers do). No special symbol: use self-terminating representations

Example 1. A “graph” can be encoded as \langle (1, 2, 3, 4)((1, 2)(2, 3)(3, 1)(1, 4)) \rangle where the graph is

\[\begin{array}{c}
2 \\
\downarrow \\
1 \\
\downarrow \\
3 \\
\end{array} \quad \begin{array}{c}
4
\end{array} \]

Notation

For any object \(O \), we will use \langle O \rangle to denote its representation as a binary string.

• Thus, if \(M \) is a DFA/PDA/TM then \langle M \rangle is its encoding as a binary string.
• If \(G \) is a graph then \langle G \rangle is its representation as a string.
• If \(O_1, O_2, \ldots, O_n \) are objects then \langle O_1, \ldots, O_n \rangle is the representation of these objects as a single string.

Problems with Programs/Machines as Input

• We will often consider problems where machines/programs are given as input.
 – Given an NFA, construct the equivalent DFA; given an NFA \(N \) and word \(w \), decide if \(w \in L(N) \); ...
• All of these algorithms can be implemented on a Turing machine
• Some of these algorithms are for decision problems, while others are for computing more general functions

Decision Problems and Languages

Recall
• Decision problems are problems that require a yes/no answer on a given input
• They have an exact correspondence to languages: \(L \) is a representation of problem \(P \) if and only if an input \(x \in L \) iff answer for \(x \) is yes in problem \(P \).

2 Deciding vs. Recognizing

Decidable and Recognizable Languages

Recognizable Language
A Turing machine \(M \) recognizes language \(L \) if \(L = L(M) \). We say \(L \) is Turing-recognizable (or simply recognizable) if there is a TM \(M \) such that \(L = L(M) \).

Decidable Language
A Turing machine \(M \) decides language \(L \) if \(L = L(M) \) and \(M \) halts on all inputs. We say \(L \) is decidable if there is a TM \(M \) that decides \(L \).

Decidable Problems

The following problems are all decidable.

• **Problem**: Given a DFA \(M \) and input \(w \) decide if \(M \) accepts \(w \). We can write this formally as a language (using our notation) as \(A_{\text{DFA}} = \{ \langle M, w \rangle \mid M \text{ is a DFA and } w \in L(M) \} \).

 Algorithm: “Simulate” \(M \) on \(w \) and answer “yes” iff \(M \) reaches a final state.

• **Problem**: Given a NFA \(M \) and input \(w \) decide if \(M \) accepts \(w \). We can write this formally as a language (using our notation) as \(A_{\text{NFA}} = \{ \langle M, w \rangle \mid M \text{ is an NFA and } w \in L(M) \} \).

 Algorithm: Convert \(M \) into a DFA and run the algorithm for \(A_{\text{DFA}} \).

• **Problem**: \(A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression and } w \in L(R) \} \).

 Algorithm: Convert \(R \) into a NFA and run the algorithm for \(A_{\text{NFA}} \).
Problem: Given a DFA M answer “yes” iff $L(M) = \emptyset$. Formally,

$$E_{\text{DFA}} = \{\langle M \rangle \mid M \text{ is a DFA s.t. } L(M) = \emptyset\}$$

Algorithm: Check if a final state is reachable from the start state by using a graph search algorithm like DFS/BFS.

Problem: Given DFA A and B, check if $L(A) = L(B)$. In other words,

$$E_{\text{DFA}} = \{\langle A, B \rangle \mid A, B \text{ are DFAs s.t. } L(A) = L(B)\}.$$

Algorithm: Construct (using cross-product construction) the DFA C recognizing $(L(A) \cap L(B))^c \cup (L(A) \cap L(B))^c$ and check if $L(C) = \emptyset$.

Problem: $\text{A}_{\text{CFG}} = \{\langle G, w \rangle \mid G \text{ is a CFG s.t. } w \in L(G)\}$.

Algorithm: Convert G to G' in Chomsky normal form. Now $w \in L(G')$ iff w can be derived in $2|w| - 1$ steps, where none of the intermediate strings is of length more than $|w|$. Go through all such derivations (which is finite) and check if they derive w.

2.1 An Undecidable but Recognizable Language

Decidable and Recognizable Languages

- But *not all languages are decidable!* In the next class we will see an example:
 - $\text{A}_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM and } w \in L(M)\}$ is undecidable
- However A_{TM} is *Turing-recognizable!*

 Proposition 2. There are languages which are recognizable, but not decidable

Recognizing A_{TM}

Program U for recognizing A_{TM}:

On input $\langle M, w \rangle$

- simulate M on w
- if simulated M accepts w, then accept
- else reject (by moving to q_{rej})

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = \text{A}_{\text{TM}}$$

But U does not *decide* A_{TM}: If M rejects w by not halting, U rejects $\langle M, w \rangle$ by not halting. Indeed (as we shall see) no TM decides A_{TM}.

3
2.2 Complementation

Deciding vs. Recognizing

Proposition 3. If L and \overline{L} are recognizable, then L is decidable

Proof. Program P for deciding L, given programs P_L and $P_{\overline{L}}$ for recognizing L and \overline{L}:

- On input x, simulate P_L and $P_{\overline{L}}$ on input x. Whether $x \in L$ or $x \notin L$, one of P_L and $P_{\overline{L}}$ will halt in finite number of steps.
- Which one to simulate first? Either could go on forever.
- On input x, simulate in parallel P_L and $P_{\overline{L}}$ on input x until either P_L or $P_{\overline{L}}$ accepts.
- If P_L accepts, accept x and halt. If $P_{\overline{L}}$ accepts, reject x and halt.

In more detail, P works as follows:

On input x
for $i = 1, 2, 3, \ldots$
 simulate P_L on input x for i steps
 simulate $P_{\overline{L}}$ on input x for i steps
 if either simulation accepts, break
if P_L accepted, accept x (and halt)
if $P_{\overline{L}}$ accepted, reject x (and halt)

(Alternately, maintain configurations of P_L and $P_{\overline{L}}$, and in each iteration of the loop advance both their simulations by one step.)

Deciding vs. Recognizing

So far:

- A_{TM} is undecidable (next lecture)
- But it is recognizable
- Is every language recognizable? No!

Proposition 4. $\overline{A_{TM}}$ is unrecognizable

Proof. If $\overline{A_{TM}}$ is recognizable, since A_{TM} is recognizable, the two languages will be decidable too!

Note: Decidable languages are closed under complementation, but recognizable languages are not.
3 Recursive Enumeration

3.1 Enumerators

Enumerators

- An enumerator is multi-tape Turing Machine, with a special output tape which is write-only
 - Write-only means (a) symbol on output tape does not affect transitions, and (b) tape head only moves right.
- Initially all tapes blank (no input). During computation the machine adds symbols to the output tape. Output considered to be a list of words (separated by special symbol #)

Recursively Enumerable Languages

Definition 5. An enumerator M is said to enumerate a string w if and only if at some point M writes a word w on the output tape. $E(M) = \{w \mid M\text{ enumerates } w\}$

Note
M need not enumerate strings in order. It is also possible that M lists some strings many times!

Definition 6. L is recursively enumerable (r.e.) iff there is an enumerator M such that $L = E(M)$.

3.2 Equivalence of Enumerating and Recognizing a Language

Recursively Enumerable Languages and TMs

Theorem 7. L is recursively enumerable if and only if L is Turing-recognizable.

Note
Hence, when we say a language L is recursively enumerable (r.e.) then
there is a TM that accepts L, and

there is an enumerator that enumerates L.

Proof. **Enumerator to Recognizer:** Suppose L is enumerated by N. Need to construct M such that $L(M) = E(N)$. M is the following TM:

On input w

- Run N. Every time N writes a word ‘x’
- compare x with w.
- If $x = w$ then accept and halt
- else continue simulating N

Clearly, if $w \in L$, M accepts w, and if $w \notin L$ then M never halts.

Flawed Solution to Construct an enumerator: Let M be such that $L = L(M)$. Need to construct N such that $E(N) = L(M)$. N is the following enumerator:

for $w = \epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots$ **do**

- simulate M on w
- if M accepts w then write the word ‘w’
 - on output tape

Does N enumerate L? No!! M may not halt on a string $w \notin L$, in which case N will not output any more strings! Therefore, one must simulate M on all inputs in parallel. But that means we need to have infinitely many parallel executions. How can this be accomplished?

Correct Construction using Dovetailing: Let M be such that $L = L(M)$. Need to construct N such that $E(N) = L(M)$. N is the following enumerator:

for $i = 1, 2, 3 \ldots$ **do**

- let w_1, w_2, \ldots, w_i be the first i strings (in lexicographic order)
- simulate M on w_1 for i steps, then on w_2 for i steps and \ldots simulate M on w_i for i steps
- if M accepts w_j within i steps then write w_j (with separator) on output tape

Observe that $w \in L(M)$ iff N will enumerates w. N will enumerate strings many times! □