1 Computing Using a Stack

Beyond Finite Memory: The Stack

• So far we considered automata with finite memory
• Today: automata with access to an infinite stack
• The stack can contain an unlimited number of characters. But
 – can read/erase only the top of the stack: pop
 – can add to only the top of the stack: push
• On longer inputs, automaton may have more items in the stack

Keeping Count Using the Stack

• An automaton can use the stack to recognize \(\{0^n1^n \mid n \geq 0 \} \)
 – On reading a 0, push it into the stack
 – After the 0s, on reading each 1, pop a 0
 – (If a 0 comes after a 1, reject)
 – If attempt to pop an empty stack, reject
 – If stack not empty at the end, reject
 – Else accept

Matching Parenthesis Using the Stack

• An automaton can use the stack to recognize balanced parenthesis
• e.g. (())() is balanced, but ()()) and ()() are not
 – On seeing a (push it on the stack
 – On seeing a) pop a (from the stack
 – If attempt to pop an empty stack, reject
 – If stack not empty at the end, reject
 – Else accept
2 Definition of Pushdown Automata

Pushdown Automata (PDA)

- Like an NFA with \(\epsilon \)-transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine
 - Non-deterministic: accepts if any thread of execution accepts
- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 1. push a symbol onto stack (or push none)
 2. change to a new state

If at \(q_1 \), with next input symbol \(a \) and top of stack \(x \), then can consume \(a \), pop \(x \), push \(y \) onto stack and move to \(q_2 \) (any of \(a, x, y \) may be \(\epsilon \))

Pushdown Automata (PDA): Formal Definition

A PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, F) \) where

- \(Q \) = Finite set of states
- \(\Sigma \) = Finite input alphabet
• \(\Gamma \) = Finite stack alphabet
• \(q_0 \) = Start state
• \(F \subseteq Q \) = Accepting/final states
• \(\delta : Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\})) \)

3 Examples of Pushdown Automata

Matching Parenthesis: PDA construction

- First push a "bottom-of-the-stack" symbol $ and move to \(q \)
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
- Pop $ and move to final state \(q_F \)

Matching Parenthesis: PDA execution
Palindrome: PDA construction

- First push a “bottom-of-the-stack” symbol $ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If $ on top of stack move to accept state

Palindrome: PDA execution
4 Semantics of a PDA

4.1 Computation

Instantaneous Description

In order to describe a machine’s execution, we need to capture a “snapshot” of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state
- In the case of a PDA, it is the state + stack contents

Definition 1. An instantaneous description of a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a pair $\langle q, \sigma \rangle$, where $q \in Q$ and $\sigma \in \Gamma^*$

Computation

Definition 2. For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w} P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instantaneous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \ldots, \langle r_k, s_k \rangle$ and a sequence x_1, x_2, \ldots, x_k, where for each i, $x_i \in \Sigma \cup \{\epsilon\}$, such that

- $w = x_1 x_2 \cdots x_k$,
- $r_0 = q_1$, and $s_0 = \sigma_1$,
- $r_k = q_2$, and $s_k = \sigma_2$,
- for every i, $(r_{i+1}, b) \in \delta(r_i, x_{i+1}, a)$ such that $s_i = as$ and $s_{i+1} = bs$, where $a, b \in \Gamma \cup \{\epsilon\}$ and $s \in \Gamma^*$

Example of Computation

\[
\begin{align*}
\langle q_0, \epsilon \rangle & \xrightarrow{()} \langle q, (\$) \rangle \text{ because} \\
\langle q_0, \epsilon \rangle & \xrightarrow{x_1=\epsilon} \langle q, (\$) \rangle \xrightarrow{x_2=\epsilon} \langle q, ((\$) \rangle \xrightarrow{x_3=\epsilon} \langle q, ((\$) \rangle \xrightarrow{x_4=\epsilon} \langle q, ((\$) \rangle.
\end{align*}
\]
4.2 Language Recognized

Acceptance/Recognition

Definition 4. A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $(q_0, \epsilon) \xrightarrow{w}_P (q, \sigma)$

Definition 5. The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{ w \in \Sigma^* | P \text{ accepts } w \}$. A language L is said to be accepted/recognized by P if $L = L(P)$.

4.3 Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,

Theorem 6. For every CFG G, there is a PDA P such that $L(G) = L(P)$. In addition, for every PDA P, there is a CFG G such that $L(P) = L(G)$. Thus, L is context-free iff there is a PDA P such that $L = L(P)$.

Proof. Skipped. \qed