1 Expressiveness

1.1 Finite Languages

Finite Languages

Definition 1. A language is finite if it has finitely many strings.

Example 2. \{0, 1, 00, 10\} is a finite language, however, \((00 \cup 11)^*\) is not.

Proposition 3. If \(L\) is finite then \(L\) is regular.

Proof. Let \(L = \{w_1, w_2, \ldots, w_n\}\). Then \(R = w_1 \cup w_2 \cup \cdots \cup w_n\) is a regular expression defining \(L\).

1.2 Non-Regular Languages

Are all languages regular?

Proposition 4. The language \(L_{eq} = \{w \in \{0, 1\}^* | w\text{ has an equal number of 0s and 1s}\}\) is not regular.

Proof? No DFA has enough states to keep track of the number of 0s and 1s it might see.

Above is a weak argument because \(E = \{w \in \{0, 1\}^* | w\text{ has an equal number of 01 and 10 substrings}\}\) is regular!

2 Proving Non-regularity

2.1 Lower Bound Method

Proving Non-Regularity

Proposition 5. The language \(L_{eq} = \{w \in \{0, 1\}^* | w\text{ has an equal number of 0s and 1s}\}\) is not regular.

Proof. Suppose (for contradiction) \(L_{eq}\) is recognized by DFA \(M = (Q, \{0, 1\}, \delta, q_0, F)\).

Let \(W = \{0\}^*\). For any \(w_1, w_2 \in W\) with \(w_1 \neq w_2\), \(\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)\). Let us observe that if the claim holds, then \(M\) has infinitely many states, and so is not a finite automaton, giving the desired contradiction.

Claim: For any \(w_1, w_2 \in W\) with \(w_1 \neq w_2\), \(\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2)\).

Proof of Claim: Suppose (for contradiction) there is \(w_1\) and \(w_2\) such that \(\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\}\). Without loss of generality we can assume that \(w_1 = 0^i\) and \(w_2 = 0^j\), with \(i < j\). Then, \(\hat{\delta}_M(q_0, w_1^i) = 0^i 1^i = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2^i) = 0^j 1^i\). Thus, \(M\) either accepts both \(0^i 1^i\) and \(0^j 1^i\), or neither. But \(0^i 1^i \in L_{eq}\) but \(0^j 1^i \notin L_{eq}\), contradicting the assumption that \(M\) recognizes \(L_{eq}\).
Example I

Proposition 6. \(L_{0n1n} = \{0^n1^n \mid n \geq 0 \} \) is not regular.

Proof. Suppose \(L_{0n1n} \) is regular and is recognized by DFA \(M = (Q, \{0, 1\}, \delta, q_0, F) \).

- Let \(W = \{0\}^* \). For any \(w_1, w_2 \in W \) with \(w_1 \neq w_2 \), \(\hat{\delta}_M(q_0, w_1) \neq \hat{\delta}_M(q_0, w_2) \).
 - Suppose (for contradiction) \(\hat{\delta}_M(q_0, w_1) = \hat{\delta}_M(q_0, w_2) = \{q\} \), where \(w_1 = 0^i \) and \(w_2 = 0^j \), with \(i < j \).
 - Then, \(\hat{\delta}_M(q_0, w_1 1^i) = \hat{\delta}_M(q, 1^i) = \hat{\delta}_M(q_0, w_2 1^j) = 0^i 1^j \).
 - But \(0^i 1^j \in L_{0n1n} \) but \(0^i 1^j \not\in L_{0n1n} \), contradicting the assumption that \(M \) recognizes \(L_{0n1n} \).

- Because of the claim, \(M \) has infinitely many states, and so is not a finite automaton! \(\square \)

2.2 Using Closure Properties

Example II

Closure Properties

Proposition 7. \(L_{anban} = \{a^nba^n \mid n \geq 0\} \) is not regular.

Proof. We could prove this proposition the way we demonstrated the other languages to be not regular. We could show that for any two (different) strings in \(W = \{a\}^*b \), any DFA \(M \) recognizing \(L_{anban} \) must go to different states, thus showing that \(M \) cannot have finitely many states. However, we choose to demonstrate a different technique to prove non-regularity of languages. This relies on closure properties.

The idea behind the proof is to show that if we had an automaton \(M \) accepting \(L_{anban} \) then we can construct an automaton accepting \(L_{0n1n} = \{0^n1^n \mid n \geq 0\} \). But since we know \(L_{0n1n} \) is not regular, we can conclude \(L_{anban} \) cannot be regular. This is the idea of reductions, where one shows that one problem (namely, \(L_{0n1n} \) in this case) can be solved using a modified version of an algorithm solving another problem (\(L_{anban} \) in this case), which plays a central role in showing impossibility results. We will see more examples of this as the course goes on.

How do we show that a DFA recognizing \(L_{anban} \) can be modified to obtain a DFA for \(L_{0n1n} \)?

We will use closure properties for this. More formally, we will show that by applying a sequence of “regularity preserving” operations to \(L_{anban} \) we can get \(L_{0n1n} \). Then, since \(L_{0n1n} \) is not regular, \(L_{anban} \) cannot be regular. The proof is as follows.

- Consider homomorphism \(h_1 : \{a, b, c\}^* \to \{a, b\}^* \) defined as \(h_1(a) = a \), \(h_1(b) = b \), \(h_1(c) = a \).
 - \(L_1 = h_1^{-1}(L_{anban}) = \{(a \cup c)^n b(a \cup c)^n \mid n \geq 0\} \)
- Let \(L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \geq 0\} \)
- Homomorphism \(h_2 : \{a, b, c\}^* \to \{0, 1\}^* \) is defined as \(h_2(a) = 0 \), \(h_2(b) = \epsilon \), and \(h_2(c) = 1 \).
\[-L_3 = h_2(L_2) = \{0^n1^n \mid n \geq 0\} = L_{0n1n}\]

- Now if L_{aban} is regular then so are L_1, L_2, L_3, and L_{0n1n}. But L_{0n1n} is not regular, and so L is not regular.

\[\square\]

Example III

Proposition 8. $L_{\text{neq}} = \{w_1w_2 \mid w_1, w_2 \in \{0, 1\}^*, |w_1| = |w_2|, \text{ but } w_1 \neq w_2\}$ is not regular.

Proof. As before there are two ways to show this result. First we can show that if M with initial state q_0 is a DFA recognizing L_{w_w}, then on any two (different) strings in $W = \{0, 1\}^*$, M must be in different states. This is because, suppose on $x, y \in \{0, 1\}^*$, $\delta_M(q_0, x) = \delta(q_0, y)$ then $\delta_M(q_0, xy) = \delta_M(q_0, yy)$. But $x \in L_{\text{neq}}$ and $yy \notin L_{\text{neq}}$, giving us the desired contradiction. Thus, M must have infinitely many states (since $|W|$ is infinite), contradicting the fact that M is a finite automaton.

Another proof uses closure properties. Consider the following sequence of languages.

- Let $h_1 : \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$ be a homomorphism such that $h_1(0) = 1$, $h_1(1) = 1$ and $h_1(\#) = \epsilon$. Consider

 $$L_1 = h_1^{-1}(L_{\text{neq}}) \cap L((0 \cup 1)^*\#(0 \cup 1)^*) = \{w_1\#w_2 \mid w_1, w_2 \in \{0, 1\}^*, |w_1| + |w_2| \text{ is even, and } w_1 \neq w_2\}$$

- $L_2 = \{0, 1, \#\}^* \setminus L_1$

- $L_3 = L_1 \cap L((0 \cup 1)^*\#(0 \cup 1)^*) \cap ((\{0, 1, \#\}\{0, 1, \#\})^*\{0, 1, \#\}) = \{w_1\#w_2 \mid w_1, w_2 \in \{0, 1\}^*, \text{ and } w_1 = w_2\}$

- Let $h_2 : \{0, 1, \bar{0}, \bar{1}, \#\}^* \rightarrow \{0, 1, \#\}^*$ be a homomorphism where $h_2(0) = h_2(\bar{0}) = 0$, $h_2(1) = h_2(\bar{1}) = 1$ and $h_2(\#) = \#$. Let $L_4 = h_2^{-1}(L_3) \cap L((\bar{0} \cup \bar{1})^*\#(\bar{0} \cup \bar{1})^*)$. Observe that

 $$L_4 = \{w_1\#w_2 \mid w_1 \in \{\bar{0}, \bar{1}\}^*, w_2 \in \{0, 1\}^* \text{ and } w_1 \text{ is same as } w_2 \text{ except for the bars}\}$$

- Let $h_3 : \{0, 1, \bar{0}, \bar{1}, \#, \#\}^* \rightarrow \{0, 1\}^*$ be the homomorphism where $h_3(\bar{0}) = 0$, $h_3(\bar{1}) = h_3(\#) = h_3(1) = \epsilon$, and $h_3(0) = 1$. Observe that $h_3(L_4) = L_{0n1n}$.

Due the closure properties of the regular languages, if L_{neq} is regular, then so are $L_1, L_2, L_3, L_4, h_3(L_4) = L_{0n1n}$. But since L_{0n1n} is not regular, L_{neq} is not regular.

\[\square\]

2.3 **Pumping Lemma**

Pumping Lemma: Overview

Pumping Lemma

Gives the template of an argument that can be used to easily prove that many languages are non-regular.

Pumping Lemma

Lemma 9. If L is regular then there is a number p (the pumping length) such that $\forall w \in L$ with $|w| \geq p$, $\exists x, y, z \in \Sigma^*$ such that $w = xyz$ and

1. $|y| > 0$
2. $|xy| \leq p$
3. $\forall i \geq 0$. $xy^iz \in L$

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$ and let $p = |Q|$. Let $w = w_1w_2 \cdots w_n \in L$ be such that $n \geq p$. For $1 \leq i \leq n$, let $\{s_i\} = \delta_M(q_0, w_1 \cdots w_i)$; define $s_0 = q_0$.

- Since $s_0, s_1, \ldots, s_i, \ldots s_p$ are $p + 1$ states, there must be j, k, $0 \leq j < k \leq p$ such that $s_j = s_k$ (= q say).
- Take $x = w_1 \cdots w_j$, $y = w_{j+1} \cdots w_k$, and $z = w_{k+1} \cdots w_n$
- Observe that since $j < k \leq p$, we have $|xy| \leq p$ and $|y| > 0$.

Claim
For all $i \geq 1$, $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$.

Proof. We will prove it by induction on i.

- **Base Case:** By our assumption that $s_j = s_k$ and the definition of x and y, we have $\hat{\delta}_M(q_0, xy) = \{s_k\} = \{s_j\} = \hat{\delta}_M(q_0, x)$.
- **Induction Step:** We have
 \[
 \hat{\delta}_M(q_0, xy^{i+1}) = \hat{\delta}_M(q, y) \text{ where } \{q\} = \hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q, y) \text{ where } \{q\} = \hat{\delta}_M(q_0, x) = \hat{\delta}_M(q_0, xy) = \hat{\delta}_M(q_0, x)
 \]

We now complete the proof of the pumping lemma.

- We have $\hat{\delta}_M(q_0, xy^i) = \hat{\delta}_M(q_0, x)$ for all $i \geq 1$
- Since $w \in L$, we have $\hat{\delta}_M(q_0, w) = \hat{\delta}_M(q_0, xyz) \subseteq F$
- Observe, $\hat{\delta}_M(q_0, xz) = \hat{\delta}_M(q, z) = \hat{\delta}_M(q_0, w)$, where $\{q\} = \hat{\delta}_M(q_0, x) = \hat{\delta}_M(q_0, xy)$. So $xz \in L$
- Similarly, $\hat{\delta}_M(q_0, xy^iz) = \hat{\delta}_M(q_0, xyz) \subseteq F$ and so $xy^iz \in L$
Finite Languages and Pumping Lemma

Question
Do finite languages really satisfy the condition in the pumping lemma?

Recall Pumping Lemma: If \(L \) is regular then there is a number \(p \) (the pumping length) such that \(\forall w \in L \) with \(|w| \geq p \), \(\exists x, y, z \in \Sigma^* \) such that \(w = xyz \) and

1. \(|y| > 0\)
2. \(|xy| \leq p\)
3. \(\forall i \geq 0. \ xy^i z \in L\)

Answer
Yes, they do. Let \(p \) be larger than the longest string in the language. Then the condition “\(\forall w \in L \) with \(|w| \geq p \), . . . ” is vacuously satisfied as there are no strings in the language longer than \(p! \)

Using the Pumping Lemma
\(L \) regular implies that \(L \) satisfies the condition in the pumping lemma. If \(L \) is not regular pumping lemma says nothing about \(L \!

Pumping Lemma, in contrapositive
If \(L \) does not satisfy the pumping condition, then \(L \) not regular.

Negation of the Pumping Condition
\[
\forall p. \ \exists w \in L \text{ with } |w| \geq p \quad \forall x, y, z \in \Sigma^*. \ w = xyz
\]
\[
(1) \ |y| > 0
\]
\[
(2) \ |xy| \leq p
\]
\[
(3) \ \forall i \geq 0. \ xy^i z \in L
\]
not all of them hold

Equivalent to showing that if (1), (2) then (3) does not. In other words, we can find \(i \) such that \(xy^i z \notin L \)

Game View

Think of using the Pumping Lemma as a game between you and an opponent.

\(L \) Task: To show that \(L \) is not regular
\(\forall p. \) Opponent picks \(p \)
\(\exists w. \) Pick \(w \) that is of length at least \(p \)
\(\forall x, y, z \) Opponent divides \(w \) into \(x, y, \text{ and } z \) such that
\[
|y| > 0, \text{ and } |xy| \leq p
\]
\(\exists k. \) You pick \(k \) and win if \(xy^k z \notin L \)
Pumping Lemma: If L is regular, opponent has a winning strategy (no matter what you do). Contrapositive: If you can beat the opponent, L not regular. Your strategy should work for any p and any subdivision that the opponent may come up with.

Example I

Proposition 10. $L_{0^n1^n} = \{0^n1^n \mid n \geq 0\}$ is not regular.

Proof. Suppose $L_{0^n1^n}$ is regular. Let p be the pumping length for $L_{0^n1^n}$.

- Consider $w = 0^p1^p$
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_{0^n1^n}$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$. Further, as $|y| > 0$, we have $s > 0$.

$$xy^0z = 0^r0^t1^p = 0^{r+t}1^p$$

Since $r + t < p$, $xy^0z \not\in L_{0^n1^n}$. Contradiction!

Example II

Proposition 11. $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\}$ is not regular.

Proof. Suppose L_{eq} is regular. Let p be the pumping length for L_{eq}.

- Consider $w = 0^p1^p$
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_{eq}$, for all i.
- Since $|xy| \leq p$, $x = 0^r$, $y = 0^s$ and $z = 0^t1^p$. Further, as $|y| > 0$, we have $s > 0$.

$$xy^0z = 0^r0^t1^p = 0^{r+t}1^p$$

Since $r + t < p$, $xy^0z \not\in L_{eq}$. Contradiction!

Example III

Proposition 12. $L_p = \{0^i \mid i \text{ prime}\}$ is not regular

Proof. Suppose L_p is regular. Let p be the pumping length for L_p.

- Consider $w = 0^m$, where $m \geq p + 2$ and m is prime.
- Since $|w| > p$, there are x, y, z such that $w = xyz$, $|xy| \leq p$, $|y| > 0$, and $xy^iz \in L_p$, for all i.
Thus, \(x = 0^r \), \(y = 0^s \) and \(z = 0^t \). Further, as \(|y| > 0 \), we have \(s > 0 \). \(xy^{r+t}z = 0^r(0^s)(r+t)0^t = 0^r+s(r+t)+t \). Now \(r+s(r+t)+t = (r+t)(s+1) \). Further \(m = r+s+t \geq p+2 \) and \(s > 0 \) mean that \(t \geq 2 \) and \(s+1 \geq 2 \). Thus, \(xy^{r+t}z \not\in L_p \). Contradiction!

Example IV

Question
Is \(L_{eq} = \{xx \mid x \in \{0,1\}^*\} \) is regular?

Suppose \(L_{eq} \) is regular, and let \(p \) be the pumping length of \(L_{eq} \).

- Consider \(w = 0^p0^p \in L \).
- Can we find substrings \(x, y, z \) satisfying the conditions in the pumping lemma? Yes! Consider \(x = \epsilon, y = 00, z = 0^{2p-2} \).
- Does this mean \(L_{eq} \) satisfies the pumping lemma? Does it mean it is regular?
 - No! We have chosen a bad \(w \). To prove that the pumping lemma is violated, we only need to exhibit some \(w \) that cannot be pumped.
- Another bad choice \((01)^p(01)^p \).

Example IV

Reloaded

Proposition 13. \(L_{eq} = \{xx \mid x \in \{0,1\}^*\} \) is not regular.

Proof. Suppose \(L_{eq} \) is regular. Let \(p \) be the pumping length for \(L_{xx} \).

- Consider \(w = 0^p10^p1 \).
- Since \(|w| > p \), there are \(x, y, z \) such that \(w = xyz, |xy| \leq p, |y| > 0, \) and \(xy^iz \in L_p, \) for all \(i \).
- Since \(|xy| \leq p, x = 0^r, y = 0^s \) and \(z = 0^t10^p1 \). Further, as \(|y| > 0, \) we have \(s > 0 \).

\[xy^0z = 0^r\epsilon0^t10^p1 = 0^{r+t}10^p1 \]

Since \(r+t < p, xy^0z \not\in L_{eq} \). Contradiction!

Lessons on Expressivity

Limits of Finite Memory
Finite automata cannot

- “keep track of counts”: e.g., \(L_{0n1n} \) not regular.
- “compare far apart pieces” of the input: e.g. \(L_{xx} \) not regular.
- do “computations that require it to look at global properties” of the input.