1 Closure Properties

Recall that we can carry out operations on one or more languages to obtain a new language.

Very useful in studying the properties of one language by relating it to other (better understood) languages.

Most useful when the operations are sophisticated, yet are guaranteed to preserve interesting properties of the language.

Today: A variety of operations which preserve regularity

- i.e., the universe of regular languages is closed under these operations

Definition 1. Regular Languages are closed under an operation op on languages if

$$L_1, L_2, \ldots, L_n \text{ regular } \implies L = \text{op}(L_1, L_2, \ldots, L_n) \text{ is regular}$$

1.1 Boolean Operators

Operations from Regular Expressions

Proposition 2. Regular Languages are closed under \cup, \circ and \ast.

Proof. (Summarizing previous arguments.)

- $L_1, L_2 \text{ regular } \implies \exists$ regexes $R_1, R_2 \text{ s.t. } L_1 = L(R_1) \text{ and } L_2 = L(R_2)$.

 - $\implies L_1 \cup L_2 = L(R_1 \cup R_2) \implies L_1 \cup L_2 \text{ regular}.$

 - $\implies L_1 \circ L_2 = L(R_1 \circ R_2) \implies L_1 \circ L_2 \text{ regular}.$

 - $\implies L_1^* = L(R_1^*) \implies L_1^* \text{ regular.}$

Closure Under Complementation

Proposition 3. Regular Languages are closed under complementation, i.e., if L is regular then $\overline{L} = \Sigma^* \setminus L$ is also regular.

Proof.

- If L is regular, then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that $L = L(M)$.

- Then, $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ (i.e., switch accept and non-accept states) accepts \overline{L}.

What happens if M (above) was an NFA? ________________________________

Closure under \cap
Proposition 4. Regular Languages are closed under intersection, i.e., if \(L_1 \) and \(L_2 \) are regular then \(L_1 \cap L_2 \) is also regular.

Proof. Observe that \(L_1 \cap L_2 = \overline{L_1 \cup L_2} \). Since regular languages are closed under union and complementation, we have

- \(\overline{L_1} \) and \(\overline{L_2} \) are regular
- \(\overline{L_1 \cup L_2} \) is regular
- Hence, \(L_1 \cap L_2 = \overline{L_1 \cup L_2} \) is regular.

Is there a direct proof for intersection (yielding a smaller DFA)?

Cross-Product Construction
Let \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) and \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) be DFAs recognizing \(L_1 \) and \(L_2 \), respectively.

Idea: Run \(M_1 \) and \(M_2 \) in parallel on the same input and accept if both \(M_1 \) and \(M_2 \) accept.

Consider \(M = (Q, \Sigma, \delta, q_0, F) \) defined as follows

- \(Q = Q_1 \times Q_2 \)
- \(q_0 = \langle q_1, q_2 \rangle \)
- \(\delta(\langle p_1, p_2 \rangle, a) = \langle \delta_1(p_1, a), \delta_2(p_2, a) \rangle \)
- \(F = F_1 \times F_2 \)

\(M \) accepts \(L_1 \cap L_2 \) (exercise)

What happens if \(M_1 \) and \(M_2 \) where NFAs? Still works! Set \(\delta(\langle p_1, p_2 \rangle, a) = \delta_1(p_1, a) \times \delta_2(p_2, a) \).

An Example

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[node distance = 2cm,thick,main node/.style={circle,fill=white,draw}]
\node (q_0) [main node] {q_0} ;
\node (q_1) [main node] at (1,0) {q_1} ;
\node (q_00) [main node] at (2,-1) {q_{00}} ;
\node (q_01) [main node] at (2,1) {q_{01}} ;
\node (q_10) [main node] at (3,0) {q_{10}} ;
\node (q_11) [main node] at (3,1) {q_{11}} ;
\draw [->] (q_0) -- node [above] {1} (q_1) ;
\draw [->] (q_0) -- node [below] {0} (q_0) ;
\draw [->] (q_1) -- node [right] {1} (q_1) ;
\draw [->] (q_0) -- node [left] {0} (q_0) ;
\end{tikzpicture}
\end{array}
\times
\begin{array}{c}
\begin{tikzpicture}[node distance = 2cm,thick,main node/.style={circle,fill=white,draw}]
\node (q_0) [main node] {q_0} ;
\node (q_1) [main node] at (1,0) {q_1} ;
\node (q_00) [main node] at (2,-1) {q_{00}} ;
\node (q_01) [main node] at (2,1) {q_{01}} ;
\node (q_10) [main node] at (3,0) {q_{10}} ;
\node (q_11) [main node] at (3,1) {q_{11}} ;
\draw [->] (q_0) -- node [above] {1} (q_1) ;
\draw [->] (q_0) -- node [below] {0} (q_0) ;
\draw [->] (q_1) -- node [right] {1} (q_1) ;
\draw [->] (q_0) -- node [left] {0} (q_0) ;
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[node distance = 2cm,thick,main node/.style={circle,fill=white,draw}]
\node (q_0) [main node] {q_0} ;
\node (q_1) [main node] at (1,0) {q_1} ;
\node (q_00) [main node] at (2,-1) {q_{00}} ;
\node (q_01) [main node] at (2,1) {q_{01}} ;
\node (q_10) [main node] at (3,0) {q_{10}} ;
\node (q_11) [main node] at (3,1) {q_{11}} ;
\draw [->] (q_0) -- node [above] {1} (q_1) ;
\draw [->] (q_0) -- node [below] {0} (q_0) ;
\draw [->] (q_1) -- node [right] {1} (q_1) ;
\draw [->] (q_0) -- node [left] {0} (q_0) ;
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[node distance = 2cm,thick,main node/.style={circle,fill=white,draw}]
\node (q_0) [main node] {q_0} ;
\node (q_1) [main node] at (1,0) {q_1} ;
\node (q_00) [main node] at (2,-1) {q_{00}} ;
\node (q_01) [main node] at (2,1) {q_{01}} ;
\node (q_10) [main node] at (3,0) {q_{10}} ;
\node (q_11) [main node] at (3,1) {q_{11}} ;
\draw [->] (q_0) -- node [above] {1} (q_1) ;
\draw [->] (q_0) -- node [below] {0} (q_0) ;
\draw [->] (q_1) -- node [right] {1} (q_1) ;
\draw [->] (q_0) -- node [left] {0} (q_0) ;
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[node distance = 2cm,thick,main node/.style={circle,fill=white,draw}]
\node (q_0) [main node] {q_0} ;
\node (q_1) [main node] at (1,0) {q_1} ;
\node (q_00) [main node] at (2,-1) {q_{00}} ;
\node (q_01) [main node] at (2,1) {q_{01}} ;
\node (q_10) [main node] at (3,0) {q_{10}} ;
\node (q_11) [main node] at (3,1) {q_{11}} ;
\draw [->] (q_0) -- node [above] {1} (q_1) ;
\draw [->] (q_0) -- node [below] {0} (q_0) ;
\draw [->] (q_1) -- node [right] {1} (q_1) ;
\draw [->] (q_0) -- node [left] {0} (q_0) ;
\end{tikzpicture}
\end{array}
\end{align*}
\]
1.2 Homomorphisms

Homomorphism

Definition 5. A homomorphism is function \(h : \Sigma^* \rightarrow \Delta^* \) defined as follows:

- \(h(\epsilon) = \epsilon \) and for \(a \in \Sigma \), \(h(a) \) is any string in \(\Delta^* \).
- For \(a = a_1a_2 \ldots a_n \in \Sigma^* \), \(n \geq 2 \), \(h(a) = h(a_1)h(a_2)\ldots h(a_n) \).
- A homomorphism \(h \) maps a string \(a \in \Sigma^* \) to a string in \(\Delta^* \) by mapping each character of \(a \) to a string \(h(a) \in \Delta^* \).
- A homomorphism is a function from strings to strings that “respects” concatenation: for any \(x, y \in \Sigma^* \), \(h(xy) = h(x)h(y) \). (Any such function is a homomorphism.)

Example 6. \(h : \{0,1\} \rightarrow \{a,b\}^* \) where \(h(0) = ab \) and \(h(1) = ba \). Then \(h(0011) = ababbaba \)

Homomorphism as an Operation on Languages

Definition 7. Given a homomorphism \(h : \Sigma^* \rightarrow \Delta^* \) and a language \(L \subseteq \Sigma^* \), define \(h(L) = \{ h(w) \mid w \in L \} \subseteq \Delta^* \).

Example 8. Let \(L = \{0^n1^n \mid n \geq 0 \} \) and \(h(0) = ab \) and \(h(1) = ba \). Then \(h(L) = \{(ab)^n(ba)^n \mid n \geq 0 \} \)

Proposition 9. For any languages \(L_1 \) and \(L_2 \), the following hold: \(h(L_1 \cup L_2) = h(L_1) \cup h(L_2) \); \(h(L_1 \circ L_2) = h(L_1) \circ h(L_2) \); and \(h(L_1^*) = h(L_1)^* \).

Proof. Left as exercise.

Closure under Homomorphism

Proposition 10. Regular languages are closed under homomorphism, i.e., if \(L \) is a regular language and \(h \) is a homomorphism, then \(h(L) \) is also regular.

Proof. We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that \(L(h(R)) = h(L(R)) \)
- Let \(R \) be such that \(L = L(R) \). Let \(R' = h(R) \). Then \(h(L) = L(R') \).

Homomorphism as an Operation on Regular Expressions
Definition 11. For a regular expression R, let $h(R)$ be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string $h(a)$.

Example 12. If $R = (0 \cup 1)^*001(0 \cup 1)^*$ and $h(0) = ab$ and $h(1) = bc$ then $h(R) = (ab \cup bc)^*ababc(ab \cup bc)^*$

Formally $h(R)$ is defined inductively as follows.

- $h(\emptyset) = \emptyset$
- $h(R_1R_2) = h(R_1)h(R_2)$
- $h(\epsilon) = \epsilon$
- $h(R_1 \cup R_2) = h(R_2) \cup h(R_2)$
- $h(a) = h(a)$
- $h(R^*) = (h(R))^*$

Proof of Claim

Claim

For any regular expression R, $L(h(R)) = h(L(R))$.

Proof. By induction on the number of operations in R

- **Base Cases:** For $R = \epsilon$ or \emptyset, $h(R) = R$ and $h(L(R)) = L(R)$. For $R = a$, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.

- **Induction Step:** For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$. By induction hypothesis, $h(L(R_i)) = L(h(R_i))$ and so $h(L(R)) = L(h(R_1) \cup h(R_2))$

Other cases ($R = R_1R_2$ and $R = R_1^*$) similar. \qed

1.3 Inverse Homomorphism

Inverse Homomorphism

Definition 13. Given homomorphism $h : \Sigma^* \to \Delta^*$ and $L \subseteq \Delta^*$, $h^{-1}(L) = \{w \in \Sigma^* | h(w) \in L\}$

$h^{-1}(L)$ consists of strings whose homomorphic images are in L
Inverse Homomorphism

Example 14. Let $\Sigma = \{a, b\}$, and $\Delta = \{0, 1\}$. Let $L = (00 \cup 1)^*$ and $h(a) = 01$ and $h(b) = 10$.

- $h^{-1}(1001) = \{ba\}$, $h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$? $(1001)^* \subseteq L$

Note: In general $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition 15. Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof. We will use the representation of regular languages in terms of DFA to argue this.

Given a DFA M recognizing L, construct an DFA M' that accepts $h^{-1}(L)$

- Intuition: On input w M' will run M on $h(w)$ and accept if M does.

Closure under Inverse Homomorphism

- Intuition: On input w M' will run M on $h(w)$ and accept if M does.

Example 16. $L = L((00 \cup 1)^*)$. $h(a) = 01$, $h(b) = 10$.

![Diagram](image)

Figure 1: Transitions of automaton M accepting language L is shown in gray. The transitions of automaton accepting $h^{-1}(L)$ are shown in red.
Closure under Inverse Homomorphism

Formal Construction

- Let \(M = (Q, \Delta, \delta, q_0, F) \) accept \(L \subseteq \Delta^* \) and let \(h : \Sigma^* \to \Delta^* \) be a homomorphism
- Define \(M' = (Q', \Sigma, \delta', q'_0, F') \), where
 - \(Q' = Q \)
 - \(q'_0 = q_0 \)
 - \(F' = F \), and
 - \(\delta'(q, a) = q' \) where \(\hat{\delta}_M(q, h(a)) = \{q'\} \); \(M' \) on input \(a \) simulates \(M \) on \(h(a) \)
- \(M' \) accepts \(h^{-1}(L) \) because \(\forall w. \hat{\delta}_M(q_0, w) = \hat{\delta}_M(q_0, h(w)) \) (which you show by induction on \(w \)).

2 Applications of Closure Properties

Example I

Definition 17. For a language \(L \subseteq \Sigma^* \), define \(\text{suffix}(L) = \{v \in \Sigma^* | \exists u \in \Sigma^*. uv \in L\} \).

Proposition 18. Regular languages are closed under the \(\text{suffix}(\cdot) \) operator. That is, if \(L \) is regular then \(\text{suffix}(L) \) is also regular.

Proof. We present two possible proofs of this result.

Direct Construction: Since \(L \) is regular, there is a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(L \). We will construct an NFA \(N \) such that \(L(N) = \text{suffix}(L(M)) = \text{suffix}(L) \). Let us first spell out what \(N \) needs to do in order to recognize \(\text{suffix}(L) \) — on input \(v \), it needs to check if there is some \(u \) such that \(uv \in L \) or \(uv \) is accepted by \(M \). \(N \) will do this by simulating \(M \) on the input \(v \), but instead of starting from the initial state \(q_0 \), it will first guess a state that \(M \) reaches on some string \(u \) (such that \(uv \in L \)), and then simulate \(M \) on the input \(v \). Formally, \(N = (Q', \Sigma, \delta', q'_0, F') \) where

- \(Q' = Q \cup \{q'_0\} \), where \(q'_0 \notin Q \)
- \(F' = F \)
- And \(\delta' \) is given by

\[
\delta'(q, a) = \begin{cases}
\delta(q, a) & \text{if } q \in Q \\
\{q \in Q | \exists u. q_0 \xrightarrow{u} M q\} & \text{if } q = q'_0 \text{ and } a = \epsilon
\end{cases}
\]
To complete the proof we need to argue that \(v \) is accepted by \(N \) iff \(v \in \text{suffix}(L(M)) \). Suppose \(v \) is accepted by \(N \). Since the only transitions out of the initial state \(q'_0 \) are \(\epsilon \)-transitions, the accepting computation of \(N \) on \(v \) looks like

\[
q'_0 \xrightarrow{\epsilon} N q \xrightarrow{v} N q'
\]

with \(q' \in F' = F \), and \(q \) being such that there is a \(u \) such that \(q_0 \xrightarrow{u} M q \). In other words, we have

\[
q_0 \xrightarrow{u} M q \xrightarrow{v} M q'
\]

and so \(uv \in L(M) = L \). Thus, \(v \in \text{suffix}(L) \). Conversely, suppose \(v \in \text{suffix}(L) \). Then there is \(u \) such that \(uv \in L \). Since \(M \) recognizes \(L \), \(M \) accepts \(uv \) using a computation of the form

\[
q_0 \xrightarrow{u} M q \xrightarrow{v} M q'
\]

where \(q \) is some state in \(Q \) and \(q' \in F \). Then from the definition of \(N \), we have a computation

\[
q'_0 \xrightarrow{\epsilon} N q \xrightarrow{v} N q'
\]

and since \(F' = F \), \(v \in L(N) \). This completes the correctness proof of \(N \).

Closure Properties: Another proof of the same result uses closure properties.

- For an alphabet \(\Sigma \), let \(\bar{\Sigma} = \{ \bar{a} \mid a \in \Sigma \} \).
- Define the homomorphisms \(\text{unbar} : (\Sigma \cup \bar{\Sigma})^* \rightarrow \Sigma^* \) and \(\text{rembar} : (\Sigma \cup \bar{\Sigma})^* \rightarrow \Sigma^* \) as
 \[
 \text{unbar}(\bar{a}) = a \text{ for } \bar{a} \in \bar{\Sigma} \quad \text{unbar}(a) = a \text{ for } a \in \Sigma
 \]
 \[
 \text{rembar}(\bar{a}) = \epsilon \text{ for } \bar{a} \in \bar{\Sigma} \quad \text{rembar}(a) = a \text{ for } a \in \Sigma
 \]
- Let \(L_1 = \text{unbar}^{-1}(L) \); since \(L \) is regular and regular languages are closed under inverse homomorphisms, \(L_1 \) is regular. \(L_1 \) contains strings belonging to \(L \) which have some (or none) of the letters annotated with a bar.
- Let \(L_2 = L_1 \cap \bar{\Sigma}^*\Sigma^* \); \(L_2 \) is regular because regular languages are closed under intersection. \(L_2 \) is the set of strings from \(L \) where some of the first few letters have been annotated with a bar.
- Observe that \(\text{suffix}(L) = \text{rembar}(L_2) \). Thus \(\text{suffix}(L) \) is regular.

\[\square\]

Example II

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA. Consider

\[
L = \{ w \mid M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w \}
\]

Is \(L \) regular?

Note that \(M \) does not necessarily accept all strings in \(L \); \(L \subseteq L(M) \).

By applying a series of regularity preserving operations to \(L(M) \) we will construct \(L \), thus showing that \(L \) is regular.

Computations: Valid and Invalid
• Consider an alphabet Δ consisting of $[paq]$ where $p, q \in Q, a \in \Sigma$ and $\delta(p, a) = q$. So symbols of Δ represent transitions of M.

• Let $h : \Delta \rightarrow \Sigma^*$ be a homomorphism such that $h([paq]) = a$

• $L_1 = h^{-1}(L(M))$; L_1 contains strings of $L(M)$ where each symbol is associated with a pair of states that represent some transition

 – Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M

• We will first remove all the strings from L_1 that correspond to invalid computations, and then remove those that do not visit every state at least once.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (\{[q_0a_1q_1] \cup [q_0a_2q_2] \cup \cdots \cup [q_0a_kq_k]\Delta^*\})$$

$(\{[q_0a_1q_1], \ldots, [q_0a_kq_k]\}$ are all the transitions out of q_0 in M)

• The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^* (\sum_{q \neq r} [paq][rbs] \Delta^*))$$

Remove “invalid” sequences from L_2. *Difference of two regular languages is regular* (why?). So L_3 is regular.

• The second state of the last symbol must be in F. Holds trivially because L_3 only contains strings accepted by M

Example continued

So far, regular language $L_3 = \text{set of strings in } \Delta^* \text{ that represent valid computations of } M$.

• Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_q^* is the set of strings where q never occurs.

• We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

$$L = h(L_4)$$

• Hence, L is regular.
2.1 In a nutshell . . .

Proving Regularity using Closure Properties
How can one show that L is a regular language?

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_1, L_2, \ldots L_k$ through regularity preserving operations

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.
- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism

(And several other operations...)